Description: Lemma for finite recursion. Without assuming ax-rep , we can show that the domain of the constructed function is a limit ordinal, and hence contains all the finite ordinals. (Contributed by Mario Carneiro, 14-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tfrlem.1 | |
|
Assertion | tfrlem16 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | |
|
2 | 1 | tfrlem8 | |
3 | ordzsl | |
|
4 | 2 3 | mpbi | |
5 | res0 | |
|
6 | 0ex | |
|
7 | 5 6 | eqeltri | |
8 | 0elon | |
|
9 | 1 | tfrlem15 | |
10 | 8 9 | ax-mp | |
11 | 7 10 | mpbir | |
12 | 11 | n0ii | |
13 | 12 | pm2.21i | |
14 | 1 | tfrlem13 | |
15 | simpr | |
|
16 | df-suc | |
|
17 | 15 16 | eqtrdi | |
18 | 17 | reseq2d | |
19 | 1 | tfrlem6 | |
20 | resdm | |
|
21 | 19 20 | ax-mp | |
22 | resundi | |
|
23 | 18 21 22 | 3eqtr3g | |
24 | vex | |
|
25 | 24 | sucid | |
26 | 25 15 | eleqtrrid | |
27 | 1 | tfrlem9a | |
28 | 26 27 | syl | |
29 | snex | |
|
30 | 1 | tfrlem7 | |
31 | funressn | |
|
32 | 30 31 | ax-mp | |
33 | 29 32 | ssexi | |
34 | unexg | |
|
35 | 28 33 34 | sylancl | |
36 | 23 35 | eqeltrd | |
37 | 36 | rexlimiva | |
38 | 14 37 | mto | |
39 | 38 | pm2.21i | |
40 | id | |
|
41 | 13 39 40 | 3jaoi | |
42 | 4 41 | ax-mp | |