Metamath Proof Explorer


Theorem tfrlem7

Description: Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994) (Revised by Mario Carneiro, 24-May-2019)

Ref Expression
Hypothesis tfrlem.1 A=f|xOnfFnxyxfy=Ffy
Assertion tfrlem7 FunrecsF

Proof

Step Hyp Ref Expression
1 tfrlem.1 A=f|xOnfFnxyxfy=Ffy
2 1 tfrlem6 RelrecsF
3 1 recsfval recsF=A
4 3 eleq2i xurecsFxuA
5 eluni xuAgxuggA
6 4 5 bitri xurecsFgxuggA
7 3 eleq2i xvrecsFxvA
8 eluni xvAhxvhhA
9 7 8 bitri xvrecsFhxvhhA
10 6 9 anbi12i xurecsFxvrecsFgxuggAhxvhhA
11 exdistrv ghxuggAxvhhAgxuggAhxvhhA
12 10 11 bitr4i xurecsFxvrecsFghxuggAxvhhA
13 df-br xguxug
14 df-br xhvxvh
15 13 14 anbi12i xguxhvxugxvh
16 1 tfrlem5 gAhAxguxhvu=v
17 16 impcom xguxhvgAhAu=v
18 15 17 sylanbr xugxvhgAhAu=v
19 18 an4s xuggAxvhhAu=v
20 19 exlimivv ghxuggAxvhhAu=v
21 12 20 sylbi xurecsFxvrecsFu=v
22 21 ax-gen vxurecsFxvrecsFu=v
23 22 gen2 xuvxurecsFxvrecsFu=v
24 dffun4 FunrecsFRelrecsFxuvxurecsFxvrecsFu=v
25 2 23 24 mpbir2an FunrecsF