Description: Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994) (Revised by Mario Carneiro, 24-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tfrlem.1 | |
|
Assertion | tfrlem7 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | |
|
2 | 1 | tfrlem6 | |
3 | 1 | recsfval | |
4 | 3 | eleq2i | |
5 | eluni | |
|
6 | 4 5 | bitri | |
7 | 3 | eleq2i | |
8 | eluni | |
|
9 | 7 8 | bitri | |
10 | 6 9 | anbi12i | |
11 | exdistrv | |
|
12 | 10 11 | bitr4i | |
13 | df-br | |
|
14 | df-br | |
|
15 | 13 14 | anbi12i | |
16 | 1 | tfrlem5 | |
17 | 16 | impcom | |
18 | 15 17 | sylanbr | |
19 | 18 | an4s | |
20 | 19 | exlimivv | |
21 | 12 20 | sylbi | |
22 | 21 | ax-gen | |
23 | 22 | gen2 | |
24 | dffun4 | |
|
25 | 2 23 24 | mpbir2an | |