Metamath Proof Explorer


Theorem tgdim01

Description: In geometries of dimension less than 2, all points are colinear. (Contributed by Thierry Arnoux, 27-Aug-2019)

Ref Expression
Hypotheses tgdim01.p P=BaseG
tgdim01.i I=ItvG
tgdim01.g φGV
tgdim01.1 φ¬GDim𝒢2
tgdim01.x φXP
tgdim01.y φYP
tgdim01.z φZP
Assertion tgdim01 φZXIYXZIYYXIZ

Proof

Step Hyp Ref Expression
1 tgdim01.p P=BaseG
2 tgdim01.i I=ItvG
3 tgdim01.g φGV
4 tgdim01.1 φ¬GDim𝒢2
5 tgdim01.x φXP
6 tgdim01.y φYP
7 tgdim01.z φZP
8 eqid distG=distG
9 1 8 2 istrkg2ld GVGDim𝒢2xPyPzP¬zxIyxzIyyxIz
10 3 9 syl φGDim𝒢2xPyPzP¬zxIyxzIyyxIz
11 4 10 mtbid φ¬xPyPzP¬zxIyxzIyyxIz
12 rexnal3 xPyPzP¬zxIyxzIyyxIz¬xPyPzPzxIyxzIyyxIz
13 12 con2bii xPyPzPzxIyxzIyyxIz¬xPyPzP¬zxIyxzIyyxIz
14 11 13 sylibr φxPyPzPzxIyxzIyyxIz
15 oveq1 x=XxIy=XIy
16 15 eleq2d x=XzxIyzXIy
17 eleq1 x=XxzIyXzIy
18 oveq1 x=XxIz=XIz
19 18 eleq2d x=XyxIzyXIz
20 16 17 19 3orbi123d x=XzxIyxzIyyxIzzXIyXzIyyXIz
21 oveq2 y=YXIy=XIY
22 21 eleq2d y=YzXIyzXIY
23 oveq2 y=YzIy=zIY
24 23 eleq2d y=YXzIyXzIY
25 eleq1 y=YyXIzYXIz
26 22 24 25 3orbi123d y=YzXIyXzIyyXIzzXIYXzIYYXIz
27 eleq1 z=ZzXIYZXIY
28 oveq1 z=ZzIY=ZIY
29 28 eleq2d z=ZXzIYXZIY
30 oveq2 z=ZXIz=XIZ
31 30 eleq2d z=ZYXIzYXIZ
32 27 29 31 3orbi123d z=ZzXIYXzIYYXIzZXIYXZIYYXIZ
33 20 26 32 rspc3v XPYPZPxPyPzPzxIyxzIyyxIzZXIYXZIYYXIZ
34 33 imp XPYPZPxPyPzPzxIyxzIyyxIzZXIYXZIYYXIZ
35 5 6 7 14 34 syl31anc φZXIYXZIYYXIZ