| Step |
Hyp |
Ref |
Expression |
| 1 |
|
istrkg.p |
|
| 2 |
|
istrkg.d |
|
| 3 |
|
istrkg.i |
|
| 4 |
|
2z |
|
| 5 |
|
uzid |
|
| 6 |
4 5
|
ax-mp |
|
| 7 |
1 2 3
|
istrkgld |
|
| 8 |
6 7
|
mpan2 |
|
| 9 |
|
r19.41v |
|
| 10 |
|
ancom |
|
| 11 |
10
|
rexbii |
|
| 12 |
|
ancom |
|
| 13 |
9 11 12
|
3bitr3ri |
|
| 14 |
13
|
exbii |
|
| 15 |
|
rexcom4 |
|
| 16 |
|
simpr |
|
| 17 |
16
|
reximi |
|
| 18 |
17
|
reximi |
|
| 19 |
18
|
adantl |
|
| 20 |
19
|
exlimiv |
|
| 21 |
20
|
adantl |
|
| 22 |
|
1ex |
|
| 23 |
|
vex |
|
| 24 |
22 23
|
f1osn |
|
| 25 |
|
f1of1 |
|
| 26 |
24 25
|
mp1i |
|
| 27 |
|
snssi |
|
| 28 |
|
f1ss |
|
| 29 |
26 27 28
|
syl2anc |
|
| 30 |
|
fzo12sn |
|
| 31 |
30
|
mpteq1i |
|
| 32 |
|
fmptsn |
|
| 33 |
22 23 32
|
mp2an |
|
| 34 |
31 33
|
eqtr4i |
|
| 35 |
34
|
a1i |
|
| 36 |
30
|
a1i |
|
| 37 |
|
eqidd |
|
| 38 |
35 36 37
|
f1eq123d |
|
| 39 |
38
|
mptru |
|
| 40 |
29 39
|
sylibr |
|
| 41 |
|
ral0 |
|
| 42 |
|
fzo0 |
|
| 43 |
42
|
raleqi |
|
| 44 |
41 43
|
mpbir |
|
| 45 |
44
|
jctl |
|
| 46 |
45
|
reximi |
|
| 47 |
46
|
reximi |
|
| 48 |
|
ovex |
|
| 49 |
48
|
mptex |
|
| 50 |
|
f1eq1 |
|
| 51 |
|
nfmpt1 |
|
| 52 |
51
|
nfeq2 |
|
| 53 |
|
nfv |
|
| 54 |
52 53
|
nfan |
|
| 55 |
|
simpll |
|
| 56 |
55
|
fveq1d |
|
| 57 |
56
|
oveq1d |
|
| 58 |
55
|
fveq1d |
|
| 59 |
58
|
oveq1d |
|
| 60 |
57 59
|
eqeq12d |
|
| 61 |
56
|
oveq1d |
|
| 62 |
58
|
oveq1d |
|
| 63 |
61 62
|
eqeq12d |
|
| 64 |
56
|
oveq1d |
|
| 65 |
58
|
oveq1d |
|
| 66 |
64 65
|
eqeq12d |
|
| 67 |
60 63 66
|
3anbi123d |
|
| 68 |
54 67
|
ralbida |
|
| 69 |
68
|
anbi1d |
|
| 70 |
69
|
2rexbidva |
|
| 71 |
50 70
|
anbi12d |
|
| 72 |
49 71
|
spcev |
|
| 73 |
40 47 72
|
syl2an |
|
| 74 |
21 73
|
impbida |
|
| 75 |
74
|
rexbiia |
|
| 76 |
14 15 75
|
3bitr2i |
|
| 77 |
8 76
|
bitrdi |
|