Metamath Proof Explorer


Theorem istrkg2ld

Description: Property of fulfilling the lower dimension 2 axiom. (Contributed by Thierry Arnoux, 20-Nov-2019)

Ref Expression
Hypotheses istrkg.p P=BaseG
istrkg.d -˙=distG
istrkg.i I=ItvG
Assertion istrkg2ld GVGDim𝒢2xPyPzP¬zxIyxzIyyxIz

Proof

Step Hyp Ref Expression
1 istrkg.p P=BaseG
2 istrkg.d -˙=distG
3 istrkg.i I=ItvG
4 2z 2
5 uzid 222
6 4 5 ax-mp 22
7 1 2 3 istrkgld GV22GDim𝒢2ff:1..^21-1PxPyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIz
8 6 7 mpan2 GVGDim𝒢2ff:1..^21-1PxPyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIz
9 r19.41v xPyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzf:1..^21-1PxPyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzf:1..^21-1P
10 ancom yPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzf:1..^21-1Pf:1..^21-1PyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIz
11 10 rexbii xPyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzf:1..^21-1PxPf:1..^21-1PyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIz
12 ancom xPyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzf:1..^21-1Pf:1..^21-1PxPyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIz
13 9 11 12 3bitr3ri f:1..^21-1PxPyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzxPf:1..^21-1PyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIz
14 13 exbii ff:1..^21-1PxPyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzfxPf:1..^21-1PyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIz
15 rexcom4 xPff:1..^21-1PyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzfxPf:1..^21-1PyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIz
16 simpr j2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIz¬zxIyxzIyyxIz
17 16 reximi zPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzzP¬zxIyxzIyyxIz
18 17 reximi yPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzyPzP¬zxIyxzIyyxIz
19 18 adantl f:1..^21-1PyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzyPzP¬zxIyxzIyyxIz
20 19 exlimiv ff:1..^21-1PyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzyPzP¬zxIyxzIyyxIz
21 20 adantl xPff:1..^21-1PyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzyPzP¬zxIyxzIyyxIz
22 1ex 1V
23 vex xV
24 22 23 f1osn 1x:11-1 ontox
25 f1of1 1x:11-1 ontox1x:11-1x
26 24 25 mp1i xP1x:11-1x
27 snssi xPxP
28 f1ss 1x:11-1xxP1x:11-1P
29 26 27 28 syl2anc xP1x:11-1P
30 fzo12sn 1..^2=1
31 30 mpteq1i j1..^2x=j1x
32 fmptsn 1VxV1x=j1x
33 22 23 32 mp2an 1x=j1x
34 31 33 eqtr4i j1..^2x=1x
35 34 a1i j1..^2x=1x
36 30 a1i 1..^2=1
37 eqidd P=P
38 35 36 37 f1eq123d j1..^2x:1..^21-1P1x:11-1P
39 38 mptru j1..^2x:1..^21-1P1x:11-1P
40 29 39 sylibr xPj1..^2x:1..^21-1P
41 ral0 jj1..^2x1-˙x=j1..^2xj-˙xj1..^2x1-˙y=j1..^2xj-˙yj1..^2x1-˙z=j1..^2xj-˙z
42 fzo0 2..^2=
43 42 raleqi j2..^2j1..^2x1-˙x=j1..^2xj-˙xj1..^2x1-˙y=j1..^2xj-˙yj1..^2x1-˙z=j1..^2xj-˙zjj1..^2x1-˙x=j1..^2xj-˙xj1..^2x1-˙y=j1..^2xj-˙yj1..^2x1-˙z=j1..^2xj-˙z
44 41 43 mpbir j2..^2j1..^2x1-˙x=j1..^2xj-˙xj1..^2x1-˙y=j1..^2xj-˙yj1..^2x1-˙z=j1..^2xj-˙z
45 44 jctl ¬zxIyxzIyyxIzj2..^2j1..^2x1-˙x=j1..^2xj-˙xj1..^2x1-˙y=j1..^2xj-˙yj1..^2x1-˙z=j1..^2xj-˙z¬zxIyxzIyyxIz
46 45 reximi zP¬zxIyxzIyyxIzzPj2..^2j1..^2x1-˙x=j1..^2xj-˙xj1..^2x1-˙y=j1..^2xj-˙yj1..^2x1-˙z=j1..^2xj-˙z¬zxIyxzIyyxIz
47 46 reximi yPzP¬zxIyxzIyyxIzyPzPj2..^2j1..^2x1-˙x=j1..^2xj-˙xj1..^2x1-˙y=j1..^2xj-˙yj1..^2x1-˙z=j1..^2xj-˙z¬zxIyxzIyyxIz
48 ovex 1..^2V
49 48 mptex j1..^2xV
50 f1eq1 f=j1..^2xf:1..^21-1Pj1..^2x:1..^21-1P
51 nfmpt1 _jj1..^2x
52 51 nfeq2 jf=j1..^2x
53 nfv jyPzP
54 52 53 nfan jf=j1..^2xyPzP
55 simpll f=j1..^2xyPzPj2..^2f=j1..^2x
56 55 fveq1d f=j1..^2xyPzPj2..^2f1=j1..^2x1
57 56 oveq1d f=j1..^2xyPzPj2..^2f1-˙x=j1..^2x1-˙x
58 55 fveq1d f=j1..^2xyPzPj2..^2fj=j1..^2xj
59 58 oveq1d f=j1..^2xyPzPj2..^2fj-˙x=j1..^2xj-˙x
60 57 59 eqeq12d f=j1..^2xyPzPj2..^2f1-˙x=fj-˙xj1..^2x1-˙x=j1..^2xj-˙x
61 56 oveq1d f=j1..^2xyPzPj2..^2f1-˙y=j1..^2x1-˙y
62 58 oveq1d f=j1..^2xyPzPj2..^2fj-˙y=j1..^2xj-˙y
63 61 62 eqeq12d f=j1..^2xyPzPj2..^2f1-˙y=fj-˙yj1..^2x1-˙y=j1..^2xj-˙y
64 56 oveq1d f=j1..^2xyPzPj2..^2f1-˙z=j1..^2x1-˙z
65 58 oveq1d f=j1..^2xyPzPj2..^2fj-˙z=j1..^2xj-˙z
66 64 65 eqeq12d f=j1..^2xyPzPj2..^2f1-˙z=fj-˙zj1..^2x1-˙z=j1..^2xj-˙z
67 60 63 66 3anbi123d f=j1..^2xyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙zj1..^2x1-˙x=j1..^2xj-˙xj1..^2x1-˙y=j1..^2xj-˙yj1..^2x1-˙z=j1..^2xj-˙z
68 54 67 ralbida f=j1..^2xyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙zj2..^2j1..^2x1-˙x=j1..^2xj-˙xj1..^2x1-˙y=j1..^2xj-˙yj1..^2x1-˙z=j1..^2xj-˙z
69 68 anbi1d f=j1..^2xyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzj2..^2j1..^2x1-˙x=j1..^2xj-˙xj1..^2x1-˙y=j1..^2xj-˙yj1..^2x1-˙z=j1..^2xj-˙z¬zxIyxzIyyxIz
70 69 2rexbidva f=j1..^2xyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzyPzPj2..^2j1..^2x1-˙x=j1..^2xj-˙xj1..^2x1-˙y=j1..^2xj-˙yj1..^2x1-˙z=j1..^2xj-˙z¬zxIyxzIyyxIz
71 50 70 anbi12d f=j1..^2xf:1..^21-1PyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzj1..^2x:1..^21-1PyPzPj2..^2j1..^2x1-˙x=j1..^2xj-˙xj1..^2x1-˙y=j1..^2xj-˙yj1..^2x1-˙z=j1..^2xj-˙z¬zxIyxzIyyxIz
72 49 71 spcev j1..^2x:1..^21-1PyPzPj2..^2j1..^2x1-˙x=j1..^2xj-˙xj1..^2x1-˙y=j1..^2xj-˙yj1..^2x1-˙z=j1..^2xj-˙z¬zxIyxzIyyxIzff:1..^21-1PyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIz
73 40 47 72 syl2an xPyPzP¬zxIyxzIyyxIzff:1..^21-1PyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIz
74 21 73 impbida xPff:1..^21-1PyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzyPzP¬zxIyxzIyyxIz
75 74 rexbiia xPff:1..^21-1PyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzxPyPzP¬zxIyxzIyyxIz
76 14 15 75 3bitr2i ff:1..^21-1PxPyPzPj2..^2f1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzxPyPzP¬zxIyxzIyyxIz
77 8 76 bitrdi GVGDim𝒢2xPyPzP¬zxIyxzIyyxIz