Metamath Proof Explorer


Theorem istrkgld

Description: Property of fulfilling the lower dimension N axiom. (Contributed by Thierry Arnoux, 20-Nov-2019)

Ref Expression
Hypotheses istrkg.p P=BaseG
istrkg.d -˙=distG
istrkg.i I=ItvG
Assertion istrkgld GVN2GDim𝒢Nff:1..^N1-1PxPyPzPj2..^Nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIz

Proof

Step Hyp Ref Expression
1 istrkg.p P=BaseG
2 istrkg.d -˙=distG
3 istrkg.i I=ItvG
4 eqidd p=Pd=-˙i=If=f
5 eqidd p=Pd=-˙i=I1..^n=1..^n
6 simp1 p=Pd=-˙i=Ip=P
7 6 eqcomd p=Pd=-˙i=IP=p
8 4 5 7 f1eq123d p=Pd=-˙i=If:1..^n1-1Pf:1..^n1-1p
9 simp2 p=Pd=-˙i=Id=-˙
10 9 eqcomd p=Pd=-˙i=I-˙=d
11 10 oveqd p=Pd=-˙i=If1-˙x=f1dx
12 10 oveqd p=Pd=-˙i=Ifj-˙x=fjdx
13 11 12 eqeq12d p=Pd=-˙i=If1-˙x=fj-˙xf1dx=fjdx
14 10 oveqd p=Pd=-˙i=If1-˙y=f1dy
15 10 oveqd p=Pd=-˙i=Ifj-˙y=fjdy
16 14 15 eqeq12d p=Pd=-˙i=If1-˙y=fj-˙yf1dy=fjdy
17 10 oveqd p=Pd=-˙i=If1-˙z=f1dz
18 10 oveqd p=Pd=-˙i=Ifj-˙z=fjdz
19 17 18 eqeq12d p=Pd=-˙i=If1-˙z=fj-˙zf1dz=fjdz
20 13 16 19 3anbi123d p=Pd=-˙i=If1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙zf1dx=fjdxf1dy=fjdyf1dz=fjdz
21 20 ralbidv p=Pd=-˙i=Ij2..^nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙zj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz
22 simp3 p=Pd=-˙i=Ii=I
23 22 eqcomd p=Pd=-˙i=II=i
24 23 oveqd p=Pd=-˙i=IxIy=xiy
25 24 eleq2d p=Pd=-˙i=IzxIyzxiy
26 23 oveqd p=Pd=-˙i=IzIy=ziy
27 26 eleq2d p=Pd=-˙i=IxzIyxziy
28 23 oveqd p=Pd=-˙i=IxIz=xiz
29 28 eleq2d p=Pd=-˙i=IyxIzyxiz
30 25 27 29 3orbi123d p=Pd=-˙i=IzxIyxzIyyxIzzxiyxziyyxiz
31 30 notbid p=Pd=-˙i=I¬zxIyxzIyyxIz¬zxiyxziyyxiz
32 21 31 anbi12d p=Pd=-˙i=Ij2..^nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz¬zxiyxziyyxiz
33 7 32 rexeqbidv p=Pd=-˙i=IzPj2..^nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzzpj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz¬zxiyxziyyxiz
34 7 33 rexeqbidv p=Pd=-˙i=IyPzPj2..^nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzypzpj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz¬zxiyxziyyxiz
35 7 34 rexeqbidv p=Pd=-˙i=IxPyPzPj2..^nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzxpypzpj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz¬zxiyxziyyxiz
36 8 35 anbi12d p=Pd=-˙i=If:1..^n1-1PxPyPzPj2..^nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzf:1..^n1-1pxpypzpj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz¬zxiyxziyyxiz
37 36 exbidv p=Pd=-˙i=Iff:1..^n1-1PxPyPzPj2..^nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzff:1..^n1-1pxpypzpj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz¬zxiyxziyyxiz
38 1 2 3 37 sbcie3s g=G[˙Baseg/p]˙[˙distg/d]˙[˙Itvg/i]˙ff:1..^n1-1pxpypzpj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz¬zxiyxziyyxizff:1..^n1-1PxPyPzPj2..^nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIz
39 eqidd n=Nf=f
40 oveq2 n=N1..^n=1..^N
41 eqidd n=NP=P
42 39 40 41 f1eq123d n=Nf:1..^n1-1Pf:1..^N1-1P
43 oveq2 n=N2..^n=2..^N
44 43 raleqdv n=Nj2..^nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙zj2..^Nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z
45 44 anbi1d n=Nj2..^nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzj2..^Nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIz
46 45 rexbidv n=NzPj2..^nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzzPj2..^Nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIz
47 46 2rexbidv n=NxPyPzPj2..^nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzxPyPzPj2..^Nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIz
48 42 47 anbi12d n=Nf:1..^n1-1PxPyPzPj2..^nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzf:1..^N1-1PxPyPzPj2..^Nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIz
49 48 exbidv n=Nff:1..^n1-1PxPyPzPj2..^nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIzff:1..^N1-1PxPyPzPj2..^Nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIz
50 df-trkgld Dim𝒢=gn|[˙Baseg/p]˙[˙distg/d]˙[˙Itvg/i]˙ff:1..^n1-1pxpypzpj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz¬zxiyxziyyxiz
51 38 49 50 brabg GVN2GDim𝒢Nff:1..^N1-1PxPyPzPj2..^Nf1-˙x=fj-˙xf1-˙y=fj-˙yf1-˙z=fj-˙z¬zxIyxzIyyxIz