Metamath Proof Explorer


Theorem istrkgld

Description: Property of fulfilling the lower dimension N axiom. (Contributed by Thierry Arnoux, 20-Nov-2019)

Ref Expression
Hypotheses istrkg.p 𝑃 = ( Base ‘ 𝐺 )
istrkg.d = ( dist ‘ 𝐺 )
istrkg.i 𝐼 = ( Itv ‘ 𝐺 )
Assertion istrkgld ( ( 𝐺𝑉𝑁 ∈ ( ℤ ‘ 2 ) ) → ( 𝐺 DimTarskiG𝑁 ↔ ∃ 𝑓 ( 𝑓 : ( 1 ..^ 𝑁 ) –1-1𝑃 ∧ ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑁 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 istrkg.p 𝑃 = ( Base ‘ 𝐺 )
2 istrkg.d = ( dist ‘ 𝐺 )
3 istrkg.i 𝐼 = ( Itv ‘ 𝐺 )
4 eqidd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → 𝑓 = 𝑓 )
5 eqidd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑛 ) )
6 simp1 ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → 𝑝 = 𝑃 )
7 6 eqcomd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → 𝑃 = 𝑝 )
8 4 5 7 f1eq123d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( 𝑓 : ( 1 ..^ 𝑛 ) –1-1𝑃𝑓 : ( 1 ..^ 𝑛 ) –1-1𝑝 ) )
9 simp2 ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → 𝑑 = )
10 9 eqcomd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → = 𝑑 )
11 10 oveqd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) )
12 10 oveqd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( 𝑓𝑗 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑑 𝑥 ) )
13 11 12 eqeq12d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ↔ ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓𝑗 ) 𝑑 𝑥 ) ) )
14 10 oveqd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) )
15 10 oveqd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( 𝑓𝑗 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑑 𝑦 ) )
16 14 15 eqeq12d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ↔ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓𝑗 ) 𝑑 𝑦 ) ) )
17 10 oveqd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) )
18 10 oveqd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( 𝑓𝑗 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑑 𝑧 ) )
19 17 18 eqeq12d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ↔ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓𝑗 ) 𝑑 𝑧 ) ) )
20 13 16 19 3anbi123d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ↔ ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓𝑗 ) 𝑑 𝑧 ) ) ) )
21 20 ralbidv ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ↔ ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓𝑗 ) 𝑑 𝑧 ) ) ) )
22 simp3 ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → 𝑖 = 𝐼 )
23 22 eqcomd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → 𝐼 = 𝑖 )
24 23 oveqd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( 𝑥 𝐼 𝑦 ) = ( 𝑥 𝑖 𝑦 ) )
25 24 eleq2d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ↔ 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ) )
26 23 oveqd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( 𝑧 𝐼 𝑦 ) = ( 𝑧 𝑖 𝑦 ) )
27 26 eleq2d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ↔ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ) )
28 23 oveqd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( 𝑥 𝐼 𝑧 ) = ( 𝑥 𝑖 𝑧 ) )
29 28 eleq2d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ↔ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) )
30 25 27 29 3orbi123d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ↔ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) )
31 30 notbid ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ↔ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) )
32 21 31 anbi12d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ↔ ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓𝑗 ) 𝑑 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) )
33 7 32 rexeqbidv ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ∃ 𝑧𝑃 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ↔ ∃ 𝑧𝑝 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓𝑗 ) 𝑑 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) )
34 7 33 rexeqbidv ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ∃ 𝑦𝑃𝑧𝑃 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ↔ ∃ 𝑦𝑝𝑧𝑝 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓𝑗 ) 𝑑 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) )
35 7 34 rexeqbidv ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ↔ ∃ 𝑥𝑝𝑦𝑝𝑧𝑝 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓𝑗 ) 𝑑 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) )
36 8 35 anbi12d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( 𝑓 : ( 1 ..^ 𝑛 ) –1-1𝑃 ∧ ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) ↔ ( 𝑓 : ( 1 ..^ 𝑛 ) –1-1𝑝 ∧ ∃ 𝑥𝑝𝑦𝑝𝑧𝑝 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓𝑗 ) 𝑑 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) ) )
37 36 exbidv ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ∃ 𝑓 ( 𝑓 : ( 1 ..^ 𝑛 ) –1-1𝑃 ∧ ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ..^ 𝑛 ) –1-1𝑝 ∧ ∃ 𝑥𝑝𝑦𝑝𝑧𝑝 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓𝑗 ) 𝑑 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) ) )
38 1 2 3 37 sbcie3s ( 𝑔 = 𝐺 → ( [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( dist ‘ 𝑔 ) / 𝑑 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ]𝑓 ( 𝑓 : ( 1 ..^ 𝑛 ) –1-1𝑝 ∧ ∃ 𝑥𝑝𝑦𝑝𝑧𝑝 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓𝑗 ) 𝑑 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ..^ 𝑛 ) –1-1𝑃 ∧ ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) ) )
39 eqidd ( 𝑛 = 𝑁𝑓 = 𝑓 )
40 oveq2 ( 𝑛 = 𝑁 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑁 ) )
41 eqidd ( 𝑛 = 𝑁𝑃 = 𝑃 )
42 39 40 41 f1eq123d ( 𝑛 = 𝑁 → ( 𝑓 : ( 1 ..^ 𝑛 ) –1-1𝑃𝑓 : ( 1 ..^ 𝑁 ) –1-1𝑃 ) )
43 oveq2 ( 𝑛 = 𝑁 → ( 2 ..^ 𝑛 ) = ( 2 ..^ 𝑁 ) )
44 43 raleqdv ( 𝑛 = 𝑁 → ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ↔ ∀ 𝑗 ∈ ( 2 ..^ 𝑁 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ) )
45 44 anbi1d ( 𝑛 = 𝑁 → ( ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ↔ ( ∀ 𝑗 ∈ ( 2 ..^ 𝑁 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) )
46 45 rexbidv ( 𝑛 = 𝑁 → ( ∃ 𝑧𝑃 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ↔ ∃ 𝑧𝑃 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑁 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) )
47 46 2rexbidv ( 𝑛 = 𝑁 → ( ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ↔ ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑁 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) )
48 42 47 anbi12d ( 𝑛 = 𝑁 → ( ( 𝑓 : ( 1 ..^ 𝑛 ) –1-1𝑃 ∧ ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) ↔ ( 𝑓 : ( 1 ..^ 𝑁 ) –1-1𝑃 ∧ ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑁 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) ) )
49 48 exbidv ( 𝑛 = 𝑁 → ( ∃ 𝑓 ( 𝑓 : ( 1 ..^ 𝑛 ) –1-1𝑃 ∧ ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ..^ 𝑁 ) –1-1𝑃 ∧ ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑁 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) ) )
50 df-trkgld DimTarskiG≥ = { ⟨ 𝑔 , 𝑛 ⟩ ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( dist ‘ 𝑔 ) / 𝑑 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ]𝑓 ( 𝑓 : ( 1 ..^ 𝑛 ) –1-1𝑝 ∧ ∃ 𝑥𝑝𝑦𝑝𝑧𝑝 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓𝑗 ) 𝑑 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) }
51 38 49 50 brabg ( ( 𝐺𝑉𝑁 ∈ ( ℤ ‘ 2 ) ) → ( 𝐺 DimTarskiG𝑁 ↔ ∃ 𝑓 ( 𝑓 : ( 1 ..^ 𝑁 ) –1-1𝑃 ∧ ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑁 ) ( ( ( 𝑓 ‘ 1 ) 𝑥 ) = ( ( 𝑓𝑗 ) 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑦 ) = ( ( 𝑓𝑗 ) 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑧 ) = ( ( 𝑓𝑗 ) 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) ) )