Step |
Hyp |
Ref |
Expression |
1 |
|
erex |
|
2 |
1
|
impcom |
|
3 |
|
ecexg |
|
4 |
2 3
|
syl |
|
5 |
4
|
adantr |
|
6 |
5
|
ralrimiva |
|
7 |
|
eqid |
|
8 |
7
|
fnmpt |
|
9 |
6 8
|
syl |
|
10 |
|
simpllr |
|
11 |
|
simpr |
|
12 |
11
|
adantr |
|
13 |
10 12
|
erth |
|
14 |
|
eceq1 |
|
15 |
|
ecelqsg |
|
16 |
2 15
|
sylan |
|
17 |
7 14 11 16
|
fvmptd3 |
|
18 |
17
|
adantr |
|
19 |
|
eceq1 |
|
20 |
|
simpr |
|
21 |
|
ecelqsg |
|
22 |
2 21
|
sylan |
|
23 |
7 19 20 22
|
fvmptd3 |
|
24 |
23
|
adantlr |
|
25 |
18 24
|
eqeq12d |
|
26 |
13 25
|
bitr4d |
|
27 |
26
|
ralrimiva |
|
28 |
27
|
ralrimiva |
|
29 |
|
mptexg |
|
30 |
29
|
adantr |
|
31 |
|
fneq1 |
|
32 |
|
simpl |
|
33 |
32
|
fveq1d |
|
34 |
32
|
fveq1d |
|
35 |
33 34
|
eqeq12d |
|
36 |
35
|
bibi2d |
|
37 |
36
|
2ralbidva |
|
38 |
31 37
|
anbi12d |
|
39 |
38
|
spcegv |
|
40 |
30 39
|
syl |
|
41 |
9 28 40
|
mp2and |
|