Description: The ternary Goldbach conjecture is valid for small odd numbers (i.e. for all odd numbers less than a fixed big m greater than 8 x 10^30). This is verified for m = 8.875694 x 10^30 by Helfgott, see tgblthelfgott . (Contributed by AV, 4-Aug-2020) (Revised by AV, 9-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | tgoldbachlt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn0 | |
|
2 | 8nn | |
|
3 | 1 2 | decnncl | |
4 | 10nn | |
|
5 | 2nn0 | |
|
6 | 9nn0 | |
|
7 | 5 6 | deccl | |
8 | nnexpcl | |
|
9 | 4 7 8 | mp2an | |
10 | 3 9 | nnmulcli | |
11 | id | |
|
12 | breq2 | |
|
13 | breq2 | |
|
14 | 13 | anbi2d | |
15 | 14 | imbi1d | |
16 | 15 | ralbidv | |
17 | 12 16 | anbi12d | |
18 | 17 | adantl | |
19 | simplr | |
|
20 | simprl | |
|
21 | simprr | |
|
22 | tgblthelfgott | |
|
23 | 19 20 21 22 | syl3anc | |
24 | 23 | ex | |
25 | 24 | ralrimiva | |
26 | 2 9 | nnmulcli | |
27 | 26 | nngt0i | |
28 | 26 | nnrei | |
29 | 3nn0 | |
|
30 | 0nn0 | |
|
31 | 29 30 | deccl | |
32 | nnexpcl | |
|
33 | 4 31 32 | mp2an | |
34 | 2 33 | nnmulcli | |
35 | 34 | nnrei | |
36 | 28 35 | ltaddposi | |
37 | 27 36 | mpbi | |
38 | dfdec10 | |
|
39 | 38 | oveq1i | |
40 | 4 2 | nnmulcli | |
41 | 40 | nncni | |
42 | 8cn | |
|
43 | 9 | nncni | |
44 | 41 42 43 | adddiri | |
45 | 41 43 | mulcomi | |
46 | 4 | nncni | |
47 | 43 46 42 | mulassi | |
48 | nncn | |
|
49 | 7 | a1i | |
50 | 48 49 | expp1d | |
51 | 4 50 | ax-mp | |
52 | 51 | eqcomi | |
53 | 52 | oveq1i | |
54 | 45 47 53 | 3eqtr2i | |
55 | 54 | oveq1i | |
56 | 2p1e3 | |
|
57 | eqid | |
|
58 | 5 56 57 | decsucc | |
59 | 58 | oveq2i | |
60 | 59 | oveq1i | |
61 | 60 | oveq1i | |
62 | 33 | nncni | |
63 | mulcom | |
|
64 | 63 | oveq1d | |
65 | 62 42 64 | mp2an | |
66 | 55 61 65 | 3eqtri | |
67 | 39 44 66 | 3eqtri | |
68 | 37 67 | breqtrri | |
69 | 25 68 | jctil | |
70 | 11 18 69 | rspcedvd | |
71 | 10 70 | ax-mp | |