Metamath Proof Explorer


Theorem tgoldbachlt

Description: The ternary Goldbach conjecture is valid for small odd numbers (i.e. for all odd numbers less than a fixed big m greater than 8 x 10^30). This is verified for m = 8.875694 x 10^30 by Helfgott, see tgblthelfgott . (Contributed by AV, 4-Aug-2020) (Revised by AV, 9-Sep-2021)

Ref Expression
Assertion tgoldbachlt m81030<mnOdd7<nn<mnGoldbachOdd

Proof

Step Hyp Ref Expression
1 8nn0 80
2 8nn 8
3 1 2 decnncl 88
4 10nn 10
5 2nn0 20
6 9nn0 90
7 5 6 deccl 290
8 nnexpcl 102901029
9 4 7 8 mp2an 1029
10 3 9 nnmulcli 881029
11 id 881029881029
12 breq2 m=88102981030<m81030<881029
13 breq2 m=881029n<mn<881029
14 13 anbi2d m=8810297<nn<m7<nn<881029
15 14 imbi1d m=8810297<nn<mnGoldbachOdd7<nn<881029nGoldbachOdd
16 15 ralbidv m=881029nOdd7<nn<mnGoldbachOddnOdd7<nn<881029nGoldbachOdd
17 12 16 anbi12d m=88102981030<mnOdd7<nn<mnGoldbachOdd81030<881029nOdd7<nn<881029nGoldbachOdd
18 17 adantl 881029m=88102981030<mnOdd7<nn<mnGoldbachOdd81030<881029nOdd7<nn<881029nGoldbachOdd
19 simplr 881029nOdd7<nn<881029nOdd
20 simprl 881029nOdd7<nn<8810297<n
21 simprr 881029nOdd7<nn<881029n<881029
22 tgblthelfgott nOdd7<nn<881029nGoldbachOdd
23 19 20 21 22 syl3anc 881029nOdd7<nn<881029nGoldbachOdd
24 23 ex 881029nOdd7<nn<881029nGoldbachOdd
25 24 ralrimiva 881029nOdd7<nn<881029nGoldbachOdd
26 2 9 nnmulcli 81029
27 26 nngt0i 0<81029
28 26 nnrei 81029
29 3nn0 30
30 0nn0 00
31 29 30 deccl 300
32 nnexpcl 103001030
33 4 31 32 mp2an 1030
34 2 33 nnmulcli 81030
35 34 nnrei 81030
36 28 35 ltaddposi 0<8102981030<81030+81029
37 27 36 mpbi 81030<81030+81029
38 dfdec10 88=108+8
39 38 oveq1i 881029=108+81029
40 4 2 nnmulcli 108
41 40 nncni 108
42 8cn 8
43 9 nncni 1029
44 41 42 43 adddiri 108+81029=1081029+81029
45 41 43 mulcomi 1081029=1029108
46 4 nncni 10
47 43 46 42 mulassi 1029108=1029108
48 nncn 1010
49 7 a1i 10290
50 48 49 expp1d 101029+1=102910
51 4 50 ax-mp 1029+1=102910
52 51 eqcomi 102910=1029+1
53 52 oveq1i 1029108=1029+18
54 45 47 53 3eqtr2i 1081029=1029+18
55 54 oveq1i 1081029+81029=1029+18+81029
56 2p1e3 2+1=3
57 eqid 29=29
58 5 56 57 decsucc 29+1=30
59 58 oveq2i 1029+1=1030
60 59 oveq1i 1029+18=10308
61 60 oveq1i 1029+18+81029=10308+81029
62 33 nncni 1030
63 mulcom 1030810308=81030
64 63 oveq1d 1030810308+81029=81030+81029
65 62 42 64 mp2an 10308+81029=81030+81029
66 55 61 65 3eqtri 1081029+81029=81030+81029
67 39 44 66 3eqtri 881029=81030+81029
68 37 67 breqtrri 81030<881029
69 25 68 jctil 88102981030<881029nOdd7<nn<881029nGoldbachOdd
70 11 18 69 rspcedvd 881029m81030<mnOdd7<nn<mnGoldbachOdd
71 10 70 ax-mp m81030<mnOdd7<nn<mnGoldbachOdd