Metamath Proof Explorer


Theorem tngds

Description: The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015) (Proof shortened by AV, 29-Oct-2024)

Ref Expression
Hypotheses tngbas.t T = G toNrmGrp N
tngds.2 - ˙ = - G
Assertion tngds N V N - ˙ = dist T

Proof

Step Hyp Ref Expression
1 tngbas.t T = G toNrmGrp N
2 tngds.2 - ˙ = - G
3 dsid dist = Slot dist ndx
4 dsndxntsetndx dist ndx TopSet ndx
5 3 4 setsnid dist G sSet dist ndx N - ˙ = dist G sSet dist ndx N - ˙ sSet TopSet ndx MetOpen N - ˙
6 2 fvexi - ˙ V
7 coexg N V - ˙ V N - ˙ V
8 6 7 mpan2 N V N - ˙ V
9 3 setsid G V N - ˙ V N - ˙ = dist G sSet dist ndx N - ˙
10 8 9 sylan2 G V N V N - ˙ = dist G sSet dist ndx N - ˙
11 eqid N - ˙ = N - ˙
12 eqid MetOpen N - ˙ = MetOpen N - ˙
13 1 2 11 12 tngval G V N V T = G sSet dist ndx N - ˙ sSet TopSet ndx MetOpen N - ˙
14 13 fveq2d G V N V dist T = dist G sSet dist ndx N - ˙ sSet TopSet ndx MetOpen N - ˙
15 5 10 14 3eqtr4a G V N V N - ˙ = dist T
16 co02 N =
17 3 str0 = dist
18 16 17 eqtri N = dist
19 fvprc ¬ G V - G =
20 2 19 eqtrid ¬ G V - ˙ =
21 20 coeq2d ¬ G V N - ˙ = N
22 reldmtng Rel dom toNrmGrp
23 22 ovprc1 ¬ G V G toNrmGrp N =
24 1 23 eqtrid ¬ G V T =
25 24 fveq2d ¬ G V dist T = dist
26 18 21 25 3eqtr4a ¬ G V N - ˙ = dist T
27 26 adantr ¬ G V N V N - ˙ = dist T
28 15 27 pm2.61ian N V N - ˙ = dist T