Metamath Proof Explorer


Theorem tngdsOLD

Description: Obsolete proof of tngds as of 29-Oct-2024. The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses tngbas.t T = G toNrmGrp N
tngds.2 - ˙ = - G
Assertion tngdsOLD N V N - ˙ = dist T

Proof

Step Hyp Ref Expression
1 tngbas.t T = G toNrmGrp N
2 tngds.2 - ˙ = - G
3 dsid dist = Slot dist ndx
4 9re 9
5 1nn 1
6 2nn0 2 0
7 9nn0 9 0
8 9lt10 9 < 10
9 5 6 7 8 declti 9 < 12
10 4 9 gtneii 12 9
11 dsndx dist ndx = 12
12 tsetndx TopSet ndx = 9
13 11 12 neeq12i dist ndx TopSet ndx 12 9
14 10 13 mpbir dist ndx TopSet ndx
15 3 14 setsnid dist G sSet dist ndx N - ˙ = dist G sSet dist ndx N - ˙ sSet TopSet ndx MetOpen N - ˙
16 2 fvexi - ˙ V
17 coexg N V - ˙ V N - ˙ V
18 16 17 mpan2 N V N - ˙ V
19 3 setsid G V N - ˙ V N - ˙ = dist G sSet dist ndx N - ˙
20 18 19 sylan2 G V N V N - ˙ = dist G sSet dist ndx N - ˙
21 eqid N - ˙ = N - ˙
22 eqid MetOpen N - ˙ = MetOpen N - ˙
23 1 2 21 22 tngval G V N V T = G sSet dist ndx N - ˙ sSet TopSet ndx MetOpen N - ˙
24 23 fveq2d G V N V dist T = dist G sSet dist ndx N - ˙ sSet TopSet ndx MetOpen N - ˙
25 15 20 24 3eqtr4a G V N V N - ˙ = dist T
26 co02 N =
27 df-ds dist = Slot 12
28 27 str0 = dist
29 26 28 eqtri N = dist
30 fvprc ¬ G V - G =
31 2 30 syl5eq ¬ G V - ˙ =
32 31 coeq2d ¬ G V N - ˙ = N
33 reldmtng Rel dom toNrmGrp
34 33 ovprc1 ¬ G V G toNrmGrp N =
35 1 34 syl5eq ¬ G V T =
36 35 fveq2d ¬ G V dist T = dist
37 29 32 36 3eqtr4a ¬ G V N - ˙ = dist T
38 37 adantr ¬ G V N V N - ˙ = dist T
39 25 38 pm2.61ian N V N - ˙ = dist T