Metamath Proof Explorer


Theorem tngval

Description: Value of the function which augments a given structure G with a norm N . (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses tngval.t T=GtoNrmGrpN
tngval.m -˙=-G
tngval.d D=N-˙
tngval.j J=MetOpenD
Assertion tngval GVNWT=GsSetdistndxDsSetTopSetndxJ

Proof

Step Hyp Ref Expression
1 tngval.t T=GtoNrmGrpN
2 tngval.m -˙=-G
3 tngval.d D=N-˙
4 tngval.j J=MetOpenD
5 elex GVGV
6 elex NWNV
7 simpl g=Gf=Ng=G
8 simpr g=Gf=Nf=N
9 7 fveq2d g=Gf=N-g=-G
10 9 2 eqtr4di g=Gf=N-g=-˙
11 8 10 coeq12d g=Gf=Nf-g=N-˙
12 11 3 eqtr4di g=Gf=Nf-g=D
13 12 opeq2d g=Gf=Ndistndxf-g=distndxD
14 7 13 oveq12d g=Gf=NgsSetdistndxf-g=GsSetdistndxD
15 12 fveq2d g=Gf=NMetOpenf-g=MetOpenD
16 15 4 eqtr4di g=Gf=NMetOpenf-g=J
17 16 opeq2d g=Gf=NTopSetndxMetOpenf-g=TopSetndxJ
18 14 17 oveq12d g=Gf=NgsSetdistndxf-gsSetTopSetndxMetOpenf-g=GsSetdistndxDsSetTopSetndxJ
19 df-tng toNrmGrp=gV,fVgsSetdistndxf-gsSetTopSetndxMetOpenf-g
20 ovex GsSetdistndxDsSetTopSetndxJV
21 18 19 20 ovmpoa GVNVGtoNrmGrpN=GsSetdistndxDsSetTopSetndxJ
22 5 6 21 syl2an GVNWGtoNrmGrpN=GsSetdistndxDsSetTopSetndxJ
23 1 22 eqtrid GVNWT=GsSetdistndxDsSetTopSetndxJ