Metamath Proof Explorer


Theorem topbas

Description: A topology is its own basis. (Contributed by NM, 17-Jul-2006)

Ref Expression
Assertion topbas JTopJTopBases

Proof

Step Hyp Ref Expression
1 inopn JTopxJyJxyJ
2 1 3expb JTopxJyJxyJ
3 simpr JTopxJyJzxyzxy
4 ssid xyxy
5 3 4 jctir JTopxJyJzxyzxyxyxy
6 eleq2 w=xyzwzxy
7 sseq1 w=xywxyxyxy
8 6 7 anbi12d w=xyzwwxyzxyxyxy
9 8 rspcev xyJzxyxyxywJzwwxy
10 2 5 9 syl2an2r JTopxJyJzxywJzwwxy
11 10 exp31 JTopxJyJzxywJzwwxy
12 11 ralrimdv JTopxJyJzxywJzwwxy
13 12 ralrimivv JTopxJyJzxywJzwwxy
14 isbasis2g JTopJTopBasesxJyJzxywJzwwxy
15 13 14 mpbird JTopJTopBases