Metamath Proof Explorer


Theorem toslat

Description: A toset is a lattice. (Contributed by Zhi Wang, 26-Sep-2024)

Ref Expression
Assertion toslat KTosetKLat

Proof

Step Hyp Ref Expression
1 tospos KTosetKPoset
2 1 ad2antrr KTosetxBaseKyBaseKxKyKPoset
3 eqid BaseK=BaseK
4 simplrl KTosetxBaseKyBaseKxKyxBaseK
5 simplrr KTosetxBaseKyBaseKxKyyBaseK
6 eqid K=K
7 simpr KTosetxBaseKyBaseKxKyxKy
8 eqidd KTosetxBaseKyBaseKxKyxy=xy
9 eqid lubK=lubK
10 2 3 4 5 6 7 8 9 lubprdm KTosetxBaseKyBaseKxKyxydomlubK
11 1 ad2antrr KTosetxBaseKyBaseKyKxKPoset
12 simplrr KTosetxBaseKyBaseKyKxyBaseK
13 simplrl KTosetxBaseKyBaseKyKxxBaseK
14 simpr KTosetxBaseKyBaseKyKxyKx
15 prcom xy=yx
16 15 a1i KTosetxBaseKyBaseKyKxxy=yx
17 11 3 12 13 6 14 16 9 lubprdm KTosetxBaseKyBaseKyKxxydomlubK
18 3 6 tleile KTosetxBaseKyBaseKxKyyKx
19 18 3expb KTosetxBaseKyBaseKxKyyKx
20 10 17 19 mpjaodan KTosetxBaseKyBaseKxydomlubK
21 20 ralrimivva KTosetxBaseKyBaseKxydomlubK
22 eqid joinK=joinK
23 3 1 9 22 joindm2 KTosetdomjoinK=BaseK×BaseKxBaseKyBaseKxydomlubK
24 21 23 mpbird KTosetdomjoinK=BaseK×BaseK
25 eqid glbK=glbK
26 2 3 4 5 6 7 8 25 glbprdm KTosetxBaseKyBaseKxKyxydomglbK
27 11 3 12 13 6 14 16 25 glbprdm KTosetxBaseKyBaseKyKxxydomglbK
28 26 27 19 mpjaodan KTosetxBaseKyBaseKxydomglbK
29 28 ralrimivva KTosetxBaseKyBaseKxydomglbK
30 eqid meetK=meetK
31 3 1 25 30 meetdm2 KTosetdommeetK=BaseK×BaseKxBaseKyBaseKxydomglbK
32 29 31 mpbird KTosetdommeetK=BaseK×BaseK
33 24 32 jca KTosetdomjoinK=BaseK×BaseKdommeetK=BaseK×BaseK
34 3 22 30 islat KLatKPosetdomjoinK=BaseK×BaseKdommeetK=BaseK×BaseK
35 1 33 34 sylanbrc KTosetKLat