| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tospos |
⊢ ( 𝐾 ∈ Toset → 𝐾 ∈ Poset ) |
| 2 |
1
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ Toset ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑦 ) → 𝐾 ∈ Poset ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 4 |
|
simplrl |
⊢ ( ( ( 𝐾 ∈ Toset ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑦 ) → 𝑥 ∈ ( Base ‘ 𝐾 ) ) |
| 5 |
|
simplrr |
⊢ ( ( ( 𝐾 ∈ Toset ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑦 ) → 𝑦 ∈ ( Base ‘ 𝐾 ) ) |
| 6 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 7 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ Toset ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑦 ) → 𝑥 ( le ‘ 𝐾 ) 𝑦 ) |
| 8 |
|
eqidd |
⊢ ( ( ( 𝐾 ∈ Toset ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑦 ) → { 𝑥 , 𝑦 } = { 𝑥 , 𝑦 } ) |
| 9 |
|
eqid |
⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) |
| 10 |
2 3 4 5 6 7 8 9
|
lubprdm |
⊢ ( ( ( 𝐾 ∈ Toset ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑦 ) → { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) ) |
| 11 |
1
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ Toset ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → 𝐾 ∈ Poset ) |
| 12 |
|
simplrr |
⊢ ( ( ( 𝐾 ∈ Toset ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → 𝑦 ∈ ( Base ‘ 𝐾 ) ) |
| 13 |
|
simplrl |
⊢ ( ( ( 𝐾 ∈ Toset ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → 𝑥 ∈ ( Base ‘ 𝐾 ) ) |
| 14 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ Toset ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → 𝑦 ( le ‘ 𝐾 ) 𝑥 ) |
| 15 |
|
prcom |
⊢ { 𝑥 , 𝑦 } = { 𝑦 , 𝑥 } |
| 16 |
15
|
a1i |
⊢ ( ( ( 𝐾 ∈ Toset ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → { 𝑥 , 𝑦 } = { 𝑦 , 𝑥 } ) |
| 17 |
11 3 12 13 6 14 16 9
|
lubprdm |
⊢ ( ( ( 𝐾 ∈ Toset ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) ) |
| 18 |
3 6
|
tleile |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 19 |
18
|
3expb |
⊢ ( ( 𝐾 ∈ Toset ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 20 |
10 17 19
|
mpjaodan |
⊢ ( ( 𝐾 ∈ Toset ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) ) |
| 21 |
20
|
ralrimivva |
⊢ ( 𝐾 ∈ Toset → ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) ) |
| 22 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
| 23 |
3 1 9 22
|
joindm2 |
⊢ ( 𝐾 ∈ Toset → ( dom ( join ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) ) ) |
| 24 |
21 23
|
mpbird |
⊢ ( 𝐾 ∈ Toset → dom ( join ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 25 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
| 26 |
2 3 4 5 6 7 8 25
|
glbprdm |
⊢ ( ( ( 𝐾 ∈ Toset ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑦 ) → { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) ) |
| 27 |
11 3 12 13 6 14 16 25
|
glbprdm |
⊢ ( ( ( 𝐾 ∈ Toset ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) ) |
| 28 |
26 27 19
|
mpjaodan |
⊢ ( ( 𝐾 ∈ Toset ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) ) |
| 29 |
28
|
ralrimivva |
⊢ ( 𝐾 ∈ Toset → ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) ) |
| 30 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
| 31 |
3 1 25 30
|
meetdm2 |
⊢ ( 𝐾 ∈ Toset → ( dom ( meet ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) ) ) |
| 32 |
29 31
|
mpbird |
⊢ ( 𝐾 ∈ Toset → dom ( meet ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 33 |
24 32
|
jca |
⊢ ( 𝐾 ∈ Toset → ( dom ( join ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∧ dom ( meet ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
| 34 |
3 22 30
|
islat |
⊢ ( 𝐾 ∈ Lat ↔ ( 𝐾 ∈ Poset ∧ ( dom ( join ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∧ dom ( meet ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) |
| 35 |
1 33 34
|
sylanbrc |
⊢ ( 𝐾 ∈ Toset → 𝐾 ∈ Lat ) |