Metamath Proof Explorer


Theorem toslub

Description: In a toset, the lowest upper bound lub , defined for partial orders is the supremum, sup ( A , B , .< ) , defined for total orders. (these are the set.mm definitions: lowest upper bound and supremum are normally synonymous). Note that those two values are also equal if such a supremum does not exist: in that case, both are equal to the empty set. (Contributed by Thierry Arnoux, 15-Feb-2018) (Revised by Thierry Arnoux, 24-Sep-2018)

Ref Expression
Hypotheses toslub.b B=BaseK
toslub.l <˙=<K
toslub.1 φKToset
toslub.2 φAB
Assertion toslub φlubKA=supAB<˙

Proof

Step Hyp Ref Expression
1 toslub.b B=BaseK
2 toslub.l <˙=<K
3 toslub.1 φKToset
4 toslub.2 φAB
5 eqid K=K
6 1 2 3 4 5 toslublem φaBbAbKacBbAbKcaKcbA¬a<˙bbBb<˙adAb<˙d
7 6 riotabidva φιaB|bAbKacBbAbKcaKc=ιaB|bA¬a<˙bbBb<˙adAb<˙d
8 eqid lubK=lubK
9 biid bAbKacBbAbKcaKcbAbKacBbAbKcaKc
10 1 5 8 9 3 4 lubval φlubKA=ιaB|bAbKacBbAbKcaKc
11 1 5 2 tosso KTosetKToset<˙OrBIBK
12 11 ibi KToset<˙OrBIBK
13 12 simpld KToset<˙OrB
14 id <˙OrB<˙OrB
15 14 supval2 <˙OrBsupAB<˙=ιaB|bA¬a<˙bbBb<˙adAb<˙d
16 3 13 15 3syl φsupAB<˙=ιaB|bA¬a<˙bbBb<˙adAb<˙d
17 7 10 16 3eqtr4d φlubKA=supAB<˙