Metamath Proof Explorer


Theorem trclfvcotr

Description: The transitive closure of a relation is a transitive relation. (Contributed by RP, 29-Apr-2020)

Ref Expression
Assertion trclfvcotr RVt+Rt+Rt+R

Proof

Step Hyp Ref Expression
1 cotr rrrabcarbbrcarc
2 sp abcarbbrcarcbcarbbrcarc
3 2 19.21bbi abcarbbrcarcarbbrcarc
4 1 3 sylbi rrrarbbrcarc
5 4 adantl Rrrrrarbbrcarc
6 5 a2i RrrrrarbbrcRrrrrarc
7 6 alimi rRrrrrarbbrcrRrrrrarc
8 7 ax-gen crRrrrrarbbrcrRrrrrarc
9 8 ax-gen bcrRrrrrarbbrcrRrrrrarc
10 9 ax-gen abcrRrrrrarbbrcrRrrrrarc
11 brtrclfv RVat+RbrRrrrrarb
12 brtrclfv RVbt+RcrRrrrrbrc
13 11 12 anbi12d RVat+Rbbt+RcrRrrrrarbrRrrrrbrc
14 jcab RrrrrarbbrcRrrrrarbRrrrrbrc
15 14 albii rRrrrrarbbrcrRrrrrarbRrrrrbrc
16 19.26 rRrrrrarbRrrrrbrcrRrrrrarbrRrrrrbrc
17 15 16 bitri rRrrrrarbbrcrRrrrrarbrRrrrrbrc
18 13 17 bitr4di RVat+Rbbt+RcrRrrrrarbbrc
19 brtrclfv RVat+RcrRrrrrarc
20 18 19 imbi12d RVat+Rbbt+Rcat+RcrRrrrrarbbrcrRrrrrarc
21 20 albidv RVcat+Rbbt+Rcat+RccrRrrrrarbbrcrRrrrrarc
22 21 2albidv RVabcat+Rbbt+Rcat+RcabcrRrrrrarbbrcrRrrrrarc
23 10 22 mpbiri RVabcat+Rbbt+Rcat+Rc
24 cotr t+Rt+Rt+Rabcat+Rbbt+Rcat+Rc
25 23 24 sylibr RVt+Rt+Rt+R