Description: The transitive closure of a relation is a transitive relation. (Contributed by RP, 29-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | trclfvcotr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cotr | |
|
2 | sp | |
|
3 | 2 | 19.21bbi | |
4 | 1 3 | sylbi | |
5 | 4 | adantl | |
6 | 5 | a2i | |
7 | 6 | alimi | |
8 | 7 | ax-gen | |
9 | 8 | ax-gen | |
10 | 9 | ax-gen | |
11 | brtrclfv | |
|
12 | brtrclfv | |
|
13 | 11 12 | anbi12d | |
14 | jcab | |
|
15 | 14 | albii | |
16 | 19.26 | |
|
17 | 15 16 | bitri | |
18 | 13 17 | bitr4di | |
19 | brtrclfv | |
|
20 | 18 19 | imbi12d | |
21 | 20 | albidv | |
22 | 21 | 2albidv | |
23 | 10 22 | mpbiri | |
24 | cotr | |
|
25 | 23 24 | sylibr | |