Metamath Proof Explorer


Theorem trlreslem

Description: Lemma for trlres . Formerly part of proof of eupthres . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 3-May-2015) (Revised by AV, 6-Mar-2021) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022)

Ref Expression
Hypotheses trlres.v V=VtxG
trlres.i I=iEdgG
trlres.d φFTrailsGP
trlres.n φN0..^F
trlres.h H=FprefixN
Assertion trlreslem φH:0..^H1-1 ontodomIF0..^N

Proof

Step Hyp Ref Expression
1 trlres.v V=VtxG
2 trlres.i I=iEdgG
3 trlres.d φFTrailsGP
4 trlres.n φN0..^F
5 trlres.h H=FprefixN
6 2 trlf1 FTrailsGPF:0..^F1-1domI
7 3 6 syl φF:0..^F1-1domI
8 elfzouz2 N0..^FFN
9 fzoss2 FN0..^N0..^F
10 4 8 9 3syl φ0..^N0..^F
11 f1ores F:0..^F1-1domI0..^N0..^FF0..^N:0..^N1-1 ontoF0..^N
12 7 10 11 syl2anc φF0..^N:0..^N1-1 ontoF0..^N
13 trliswlk FTrailsGPFWalksGP
14 2 wlkf FWalksGPFWorddomI
15 3 13 14 3syl φFWorddomI
16 fzossfz 0..^F0F
17 16 4 sselid φN0F
18 pfxres FWorddomIN0FFprefixN=F0..^N
19 15 17 18 syl2anc φFprefixN=F0..^N
20 5 19 eqtrid φH=F0..^N
21 5 fveq2i H=FprefixN
22 elfzofz N0..^FN0F
23 4 22 syl φN0F
24 pfxlen FWorddomIN0FFprefixN=N
25 15 23 24 syl2anc φFprefixN=N
26 21 25 eqtrid φH=N
27 26 oveq2d φ0..^H=0..^N
28 wrdf FWorddomIF:0..^FdomI
29 fimass F:0..^FdomIF0..^NdomI
30 14 28 29 3syl FWalksGPF0..^NdomI
31 3 13 30 3syl φF0..^NdomI
32 ssdmres F0..^NdomIdomIF0..^N=F0..^N
33 31 32 sylib φdomIF0..^N=F0..^N
34 20 27 33 f1oeq123d φH:0..^H1-1 ontodomIF0..^NF0..^N:0..^N1-1 ontoF0..^N
35 12 34 mpbird φH:0..^H1-1 ontodomIF0..^N