Metamath Proof Explorer


Theorem trpred

Description: The class of predecessors of an element of a transitive class for the membership relation is that element. (Contributed by BJ, 12-Oct-2024)

Ref Expression
Assertion trpred TrAXAPredEAX=X

Proof

Step Hyp Ref Expression
1 predep XAPredEAX=AX
2 1 adantl TrAXAPredEAX=AX
3 trss TrAXAXA
4 3 imp TrAXAXA
5 sseqin2 XAAX=X
6 4 5 sylib TrAXAAX=X
7 2 6 eqtrd TrAXAPredEAX=X