Metamath Proof Explorer


Theorem trreleq

Description: Equality theorem for the transitive relation predicate. (Contributed by Peter Mazsa, 15-Apr-2019) (Revised by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion trreleq R=STrRelRTrRelS

Proof

Step Hyp Ref Expression
1 coideq R=SRR=SS
2 id R=SR=S
3 1 2 sseq12d R=SRRRSSS
4 releq R=SRelRRelS
5 3 4 anbi12d R=SRRRRelRSSSRelS
6 dftrrel2 TrRelRRRRRelR
7 dftrrel2 TrRelSSSSRelS
8 5 6 7 3bitr4g R=STrRelRTrRelS