Description: A nonempty Tarski class is infinite, because it contains all the finite levels of the cumulative hierarchy. (This proof does not use ax-inf .) (Contributed by Mario Carneiro, 24-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | tskr1om | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 | |
|
2 | 1 | eleq1d | |
3 | fveq2 | |
|
4 | 3 | eleq1d | |
5 | fveq2 | |
|
6 | 5 | eleq1d | |
7 | r10 | |
|
8 | tsk0 | |
|
9 | 7 8 | eqeltrid | |
10 | tskpw | |
|
11 | nnon | |
|
12 | r1suc | |
|
13 | 11 12 | syl | |
14 | 13 | eleq1d | |
15 | 10 14 | imbitrrid | |
16 | 15 | expd | |
17 | 16 | adantrd | |
18 | 2 4 6 9 17 | finds2 | |
19 | eleq1 | |
|
20 | 19 | imbi2d | |
21 | 18 20 | syl5ibcom | |
22 | 21 | rexlimiv | |
23 | r1fnon | |
|
24 | fnfun | |
|
25 | 23 24 | ax-mp | |
26 | fvelima | |
|
27 | 25 26 | mpan | |
28 | 22 27 | syl11 | |
29 | 28 | ssrdv | |