Metamath Proof Explorer


Theorem tskr1om

Description: A nonempty Tarski class is infinite, because it contains all the finite levels of the cumulative hierarchy. (This proof does not use ax-inf .) (Contributed by Mario Carneiro, 24-Jun-2013)

Ref Expression
Assertion tskr1om TTarskiTR1ωT

Proof

Step Hyp Ref Expression
1 fveq2 x=R1x=R1
2 1 eleq1d x=R1xTR1T
3 fveq2 x=yR1x=R1y
4 3 eleq1d x=yR1xTR1yT
5 fveq2 x=sucyR1x=R1sucy
6 5 eleq1d x=sucyR1xTR1sucyT
7 r10 R1=
8 tsk0 TTarskiTT
9 7 8 eqeltrid TTarskiTR1T
10 tskpw TTarskiR1yT𝒫R1yT
11 nnon yωyOn
12 r1suc yOnR1sucy=𝒫R1y
13 11 12 syl yωR1sucy=𝒫R1y
14 13 eleq1d yωR1sucyT𝒫R1yT
15 10 14 imbitrrid yωTTarskiR1yTR1sucyT
16 15 expd yωTTarskiR1yTR1sucyT
17 16 adantrd yωTTarskiTR1yTR1sucyT
18 2 4 6 9 17 finds2 xωTTarskiTR1xT
19 eleq1 R1x=yR1xTyT
20 19 imbi2d R1x=yTTarskiTR1xTTTarskiTyT
21 18 20 syl5ibcom xωR1x=yTTarskiTyT
22 21 rexlimiv xωR1x=yTTarskiTyT
23 r1fnon R1FnOn
24 fnfun R1FnOnFunR1
25 23 24 ax-mp FunR1
26 fvelima FunR1yR1ωxωR1x=y
27 25 26 mpan yR1ωxωR1x=y
28 22 27 syl11 TTarskiTyR1ωyT
29 28 ssrdv TTarskiTR1ωT