Metamath Proof Explorer


Theorem tsmscl

Description: A sum in a topological group is an element of the group. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tsmscl.b B=BaseG
tsmscl.1 φGCMnd
tsmscl.2 φGTopSp
tsmscl.a φAV
tsmscl.f φF:AB
Assertion tsmscl φGtsumsFB

Proof

Step Hyp Ref Expression
1 tsmscl.b B=BaseG
2 tsmscl.1 φGCMnd
3 tsmscl.2 φGTopSp
4 tsmscl.a φAV
5 tsmscl.f φF:AB
6 eqid TopOpenG=TopOpenG
7 eqid 𝒫AFin=𝒫AFin
8 1 6 7 2 3 4 5 eltsms φxGtsumsFxBwTopOpenGxwz𝒫AFiny𝒫AFinzyGFyw
9 simpl xBwTopOpenGxwz𝒫AFiny𝒫AFinzyGFywxB
10 8 9 syl6bi φxGtsumsFxB
11 10 ssrdv φGtsumsFB