Description: Any subset of a totally ordered set is totally ordered. (Contributed by FL, 24-Jan-2010) (Proof shortened by Mario Carneiro, 21-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | tsrss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psss | |
|
2 | inss1 | |
|
3 | dmss | |
|
4 | ssralv | |
|
5 | 2 3 4 | mp2b | |
6 | ssralv | |
|
7 | 2 3 6 | mp2b | |
8 | 7 | ralimi | |
9 | 5 8 | syl | |
10 | inss2 | |
|
11 | dmss | |
|
12 | 10 11 | ax-mp | |
13 | dmxpid | |
|
14 | 12 13 | sseqtri | |
15 | 14 | sseli | |
16 | 14 | sseli | |
17 | brinxp | |
|
18 | brinxp | |
|
19 | 18 | ancoms | |
20 | 17 19 | orbi12d | |
21 | 15 16 20 | syl2an | |
22 | 21 | ralbidva | |
23 | 22 | ralbiia | |
24 | 9 23 | sylib | |
25 | 1 24 | anim12i | |
26 | eqid | |
|
27 | 26 | istsr2 | |
28 | eqid | |
|
29 | 28 | istsr2 | |
30 | 25 27 29 | 3imtr4i | |