Metamath Proof Explorer


Theorem txcmp

Description: The topological product of two compact spaces is compact. (Contributed by Mario Carneiro, 14-Sep-2014) (Proof shortened 21-Mar-2015.)

Ref Expression
Assertion txcmp R Comp S Comp R × t S Comp

Proof

Step Hyp Ref Expression
1 cmptop R Comp R Top
2 cmptop S Comp S Top
3 txtop R Top S Top R × t S Top
4 1 2 3 syl2an R Comp S Comp R × t S Top
5 eqid R = R
6 eqid S = S
7 simpll R Comp S Comp w 𝒫 R × t S R × t S = w R Comp
8 simplr R Comp S Comp w 𝒫 R × t S R × t S = w S Comp
9 elpwi w 𝒫 R × t S w R × t S
10 9 ad2antrl R Comp S Comp w 𝒫 R × t S R × t S = w w R × t S
11 5 6 txuni R Top S Top R × S = R × t S
12 1 2 11 syl2an R Comp S Comp R × S = R × t S
13 12 adantr R Comp S Comp w 𝒫 R × t S R × t S = w R × S = R × t S
14 simprr R Comp S Comp w 𝒫 R × t S R × t S = w R × t S = w
15 13 14 eqtrd R Comp S Comp w 𝒫 R × t S R × t S = w R × S = w
16 5 6 7 8 10 15 txcmplem2 R Comp S Comp w 𝒫 R × t S R × t S = w v 𝒫 w Fin R × S = v
17 13 eqeq1d R Comp S Comp w 𝒫 R × t S R × t S = w R × S = v R × t S = v
18 17 rexbidv R Comp S Comp w 𝒫 R × t S R × t S = w v 𝒫 w Fin R × S = v v 𝒫 w Fin R × t S = v
19 16 18 mpbid R Comp S Comp w 𝒫 R × t S R × t S = w v 𝒫 w Fin R × t S = v
20 19 expr R Comp S Comp w 𝒫 R × t S R × t S = w v 𝒫 w Fin R × t S = v
21 20 ralrimiva R Comp S Comp w 𝒫 R × t S R × t S = w v 𝒫 w Fin R × t S = v
22 eqid R × t S = R × t S
23 22 iscmp R × t S Comp R × t S Top w 𝒫 R × t S R × t S = w v 𝒫 w Fin R × t S = v
24 4 21 23 sylanbrc R Comp S Comp R × t S Comp