Metamath Proof Explorer


Theorem tz7.44lem1

Description: The ordered pair abstraction G defined in the hypothesis is a function. This was a lemma for tz7.44-1 , tz7.44-2 , and tz7.44-3 when they used that definition of G . Now, they use the maps-to df-mpt idiom so this lemma is not needed anymore, but is kept in case other applications (for instance in intuitionistic set theory) need it. (Contributed by NM, 23-Apr-1995) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypothesis tz7.44lem1.1 G=xy|x=y=A¬x=Limdomxy=HxdomxLimdomxy=ranx
Assertion tz7.44lem1 FunG

Proof

Step Hyp Ref Expression
1 tz7.44lem1.1 G=xy|x=y=A¬x=Limdomxy=HxdomxLimdomxy=ranx
2 funopab Funxy|x=y=A¬x=Limdomxy=HxdomxLimdomxy=ranxx*yx=y=A¬x=Limdomxy=HxdomxLimdomxy=ranx
3 fvex HxdomxV
4 vex xV
5 rnexg xVranxV
6 uniexg ranxVranxV
7 4 5 6 mp2b ranxV
8 nlim0 ¬Lim
9 dm0 dom=
10 limeq dom=LimdomLim
11 9 10 ax-mp LimdomLim
12 8 11 mtbir ¬Limdom
13 dmeq x=domx=dom
14 limeq domx=domLimdomxLimdom
15 13 14 syl x=LimdomxLimdom
16 15 biimpa x=LimdomxLimdom
17 12 16 mto ¬x=Limdomx
18 3 7 17 moeq3 *yx=y=A¬x=Limdomxy=HxdomxLimdomxy=ranx
19 2 18 mpgbir Funxy|x=y=A¬x=Limdomxy=HxdomxLimdomxy=ranx
20 1 funeqi FunGFunxy|x=y=A¬x=Limdomxy=HxdomxLimdomxy=ranx
21 19 20 mpbir FunG