Metamath Proof Explorer


Theorem ufilmax

Description: Any filter finer than an ultrafilter is actually equal to it. (Contributed by Jeff Hankins, 1-Dec-2009) (Revised by Mario Carneiro, 29-Jul-2015)

Ref Expression
Assertion ufilmax FUFilXGFilXFGF=G

Proof

Step Hyp Ref Expression
1 simp3 FUFilXGFilXFGFG
2 filelss GFilXxGxX
3 2 ex GFilXxGxX
4 3 3ad2ant2 FUFilXGFilXFGxGxX
5 ufilb FUFilXxX¬xFXxF
6 5 3ad2antl1 FUFilXGFilXFGxX¬xFXxF
7 simpl3 FUFilXGFilXFGxXFG
8 7 sseld FUFilXGFilXFGxXXxFXxG
9 filfbas GFilXGfBasX
10 fbncp GfBasXxG¬XxG
11 10 ex GfBasXxG¬XxG
12 9 11 syl GFilXxG¬XxG
13 12 con2d GFilXXxG¬xG
14 13 3ad2ant2 FUFilXGFilXFGXxG¬xG
15 14 adantr FUFilXGFilXFGxXXxG¬xG
16 8 15 syld FUFilXGFilXFGxXXxF¬xG
17 6 16 sylbid FUFilXGFilXFGxX¬xF¬xG
18 17 con4d FUFilXGFilXFGxXxGxF
19 18 ex FUFilXGFilXFGxXxGxF
20 19 com23 FUFilXGFilXFGxGxXxF
21 4 20 mpdd FUFilXGFilXFGxGxF
22 21 ssrdv FUFilXGFilXFGGF
23 1 22 eqssd FUFilXGFilXFGF=G