Metamath Proof Explorer


Theorem uhgr0v0e

Description: The null graph, with no vertices, has no edges. (Contributed by AV, 21-Oct-2020)

Ref Expression
Hypotheses uhgr0v0e.v V=VtxG
uhgr0v0e.e E=EdgG
Assertion uhgr0v0e GUHGraphV=E=

Proof

Step Hyp Ref Expression
1 uhgr0v0e.v V=VtxG
2 uhgr0v0e.e E=EdgG
3 1 eqeq1i V=VtxG=
4 uhgr0vb GUHGraphVtxG=GUHGraphiEdgG=
5 4 biimpd GUHGraphVtxG=GUHGraphiEdgG=
6 5 ex GUHGraphVtxG=GUHGraphiEdgG=
7 3 6 biimtrid GUHGraphV=GUHGraphiEdgG=
8 7 pm2.43a GUHGraphV=iEdgG=
9 8 imp GUHGraphV=iEdgG=
10 2 eqeq1i E=EdgG=
11 uhgriedg0edg0 GUHGraphEdgG=iEdgG=
12 10 11 bitrid GUHGraphE=iEdgG=
13 12 adantr GUHGraphV=E=iEdgG=
14 9 13 mpbird GUHGraphV=E=