Description: If two sets have the same vertices and the same edges, one set is a hypergraph iff the other set is a hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017) (Revised by AV, 18-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uhgrf.v | |
|
uhgrf.e | |
||
uhgreq12g.w | |
||
uhgreq12g.f | |
||
Assertion | uhgreq12g | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrf.v | |
|
2 | uhgrf.e | |
|
3 | uhgreq12g.w | |
|
4 | uhgreq12g.f | |
|
5 | 1 2 | isuhgr | |
6 | 5 | adantr | |
7 | 6 | adantr | |
8 | simpr | |
|
9 | 8 | dmeqd | |
10 | pweq | |
|
11 | 10 | difeq1d | |
12 | 11 | adantr | |
13 | 8 9 12 | feq123d | |
14 | 3 4 | isuhgr | |
15 | 14 | adantl | |
16 | 15 | bicomd | |
17 | 13 16 | sylan9bbr | |
18 | 7 17 | bitrd | |