Metamath Proof Explorer


Theorem uhgreq12g

Description: If two sets have the same vertices and the same edges, one set is a hypergraph iff the other set is a hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017) (Revised by AV, 18-Jan-2020)

Ref Expression
Hypotheses uhgrf.v V=VtxG
uhgrf.e E=iEdgG
uhgreq12g.w W=VtxH
uhgreq12g.f F=iEdgH
Assertion uhgreq12g GXHYV=WE=FGUHGraphHUHGraph

Proof

Step Hyp Ref Expression
1 uhgrf.v V=VtxG
2 uhgrf.e E=iEdgG
3 uhgreq12g.w W=VtxH
4 uhgreq12g.f F=iEdgH
5 1 2 isuhgr GXGUHGraphE:domE𝒫V
6 5 adantr GXHYGUHGraphE:domE𝒫V
7 6 adantr GXHYV=WE=FGUHGraphE:domE𝒫V
8 simpr V=WE=FE=F
9 8 dmeqd V=WE=FdomE=domF
10 pweq V=W𝒫V=𝒫W
11 10 difeq1d V=W𝒫V=𝒫W
12 11 adantr V=WE=F𝒫V=𝒫W
13 8 9 12 feq123d V=WE=FE:domE𝒫VF:domF𝒫W
14 3 4 isuhgr HYHUHGraphF:domF𝒫W
15 14 adantl GXHYHUHGraphF:domF𝒫W
16 15 bicomd GXHYF:domF𝒫WHUHGraph
17 13 16 sylan9bbr GXHYV=WE=FE:domE𝒫VHUHGraph
18 7 17 bitrd GXHYV=WE=FGUHGraphHUHGraph