Metamath Proof Explorer


Theorem uhgrn0

Description: An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by AV, 15-Dec-2020)

Ref Expression
Hypothesis uhgrfun.e E=iEdgG
Assertion uhgrn0 GUHGraphEFnAFAEF

Proof

Step Hyp Ref Expression
1 uhgrfun.e E=iEdgG
2 eqid VtxG=VtxG
3 2 1 uhgrf GUHGraphE:domE𝒫VtxG
4 fndm EFnAdomE=A
5 4 feq2d EFnAE:domE𝒫VtxGE:A𝒫VtxG
6 3 5 syl5ibcom GUHGraphEFnAE:A𝒫VtxG
7 6 imp GUHGraphEFnAE:A𝒫VtxG
8 7 ffvelcdmda GUHGraphEFnAFAEF𝒫VtxG
9 8 3impa GUHGraphEFnAFAEF𝒫VtxG
10 eldifsni EF𝒫VtxGEF
11 9 10 syl GUHGraphEFnAFAEF