Metamath Proof Explorer


Theorem umgr2edg1

Description: If a vertex is adjacent to two different vertices in a multigraph, there is not only one edge starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 8-Jun-2021)

Ref Expression
Hypotheses usgrf1oedg.i I=iEdgG
usgrf1oedg.e E=EdgG
Assertion umgr2edg1 GUMGraphABNAEBNE¬∃!xdomINIx

Proof

Step Hyp Ref Expression
1 usgrf1oedg.i I=iEdgG
2 usgrf1oedg.e E=EdgG
3 1 2 umgr2edg GUMGraphABNAEBNExdomIydomIxyNIxNIy
4 3anrot xyNIxNIyNIxNIyxy
5 df-ne xy¬x=y
6 5 3anbi3i NIxNIyxyNIxNIy¬x=y
7 4 6 bitri xyNIxNIyNIxNIy¬x=y
8 df-3an NIxNIy¬x=yNIxNIy¬x=y
9 7 8 bitri xyNIxNIyNIxNIy¬x=y
10 9 2rexbii xdomIydomIxyNIxNIyxdomIydomINIxNIy¬x=y
11 3 10 sylib GUMGraphABNAEBNExdomIydomINIxNIy¬x=y
12 rexanali ydomINIxNIy¬x=y¬ydomINIxNIyx=y
13 12 rexbii xdomIydomINIxNIy¬x=yxdomI¬ydomINIxNIyx=y
14 rexnal xdomI¬ydomINIxNIyx=y¬xdomIydomINIxNIyx=y
15 13 14 bitri xdomIydomINIxNIy¬x=y¬xdomIydomINIxNIyx=y
16 11 15 sylib GUMGraphABNAEBNE¬xdomIydomINIxNIyx=y
17 16 intnand GUMGraphABNAEBNE¬xdomINIxxdomIydomINIxNIyx=y
18 fveq2 x=yIx=Iy
19 18 eleq2d x=yNIxNIy
20 19 reu4 ∃!xdomINIxxdomINIxxdomIydomINIxNIyx=y
21 17 20 sylnibr GUMGraphABNAEBNE¬∃!xdomINIx