Metamath Proof Explorer


Theorem umgr2edgneu

Description: If a vertex is adjacent to two different vertices in a multigraph, there is not only one edge starting at this vertex, analogous to usgr2edg1 . Lemma for theorems about friendship graphs. (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 9-Jan-2020)

Ref Expression
Hypothesis umgrvad2edg.e E=EdgG
Assertion umgr2edgneu GUMGraphABNAEBNE¬∃!xENx

Proof

Step Hyp Ref Expression
1 umgrvad2edg.e E=EdgG
2 1 umgrvad2edg GUMGraphABNAEBNExEyExyNxNy
3 3simpc xyNxNyNxNy
4 neneq xy¬x=y
5 4 3ad2ant1 xyNxNy¬x=y
6 3 5 jca xyNxNyNxNy¬x=y
7 6 reximi yExyNxNyyENxNy¬x=y
8 7 reximi xEyExyNxNyxEyENxNy¬x=y
9 2 8 syl GUMGraphABNAEBNExEyENxNy¬x=y
10 rexanali yENxNy¬x=y¬yENxNyx=y
11 10 rexbii xEyENxNy¬x=yxE¬yENxNyx=y
12 rexnal xE¬yENxNyx=y¬xEyENxNyx=y
13 11 12 bitri xEyENxNy¬x=y¬xEyENxNyx=y
14 9 13 sylib GUMGraphABNAEBNE¬xEyENxNyx=y
15 14 intnand GUMGraphABNAEBNE¬xENxxEyENxNyx=y
16 eleq2w x=yNxNy
17 16 reu4 ∃!xENxxENxxEyENxNyx=y
18 15 17 sylnibr GUMGraphABNAEBNE¬∃!xENx