Metamath Proof Explorer


Theorem umgrvad2edg

Description: If a vertex is adjacent to two different vertices in a multigraph, there are more than one edges starting at this vertex, analogous to usgr2edg . (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 9-Jan-2020) (Revised by AV, 8-Jun-2021)

Ref Expression
Hypothesis umgrvad2edg.e E=EdgG
Assertion umgrvad2edg GUMGraphABNAEBNExEyExyNxNy

Proof

Step Hyp Ref Expression
1 umgrvad2edg.e E=EdgG
2 simpl NAEBNENAE
3 simpr NAEBNEBNE
4 eqid VtxG=VtxG
5 4 1 umgrpredgv GUMGraphNAENVtxGAVtxG
6 5 ex GUMGraphNAENVtxGAVtxG
7 4 1 umgrpredgv GUMGraphBNEBVtxGNVtxG
8 7 ex GUMGraphBNEBVtxGNVtxG
9 6 8 anim12d GUMGraphNAEBNENVtxGAVtxGBVtxGNVtxG
10 9 adantr GUMGraphABNAEBNENVtxGAVtxGBVtxGNVtxG
11 10 imp GUMGraphABNAEBNENVtxGAVtxGBVtxGNVtxG
12 simplr GUMGraphABNAEBNEAB
13 1 umgredgne GUMGraphNAENA
14 13 necomd GUMGraphNAEAN
15 14 ad2ant2r GUMGraphABNAEBNEAN
16 12 15 jca GUMGraphABNAEBNEABAN
17 16 olcd GUMGraphABNAEBNENBNNABAN
18 prneimg NVtxGAVtxGBVtxGNVtxGNBNNABANNABN
19 18 imp NVtxGAVtxGBVtxGNVtxGNBNNABANNABN
20 prid1g NVtxGNNA
21 20 ad3antrrr NVtxGAVtxGBVtxGNVtxGNBNNABANNNA
22 prid2g NVtxGNBN
23 22 ad3antrrr NVtxGAVtxGBVtxGNVtxGNBNNABANNBN
24 19 21 23 3jca NVtxGAVtxGBVtxGNVtxGNBNNABANNABNNNANBN
25 11 17 24 syl2anc GUMGraphABNAEBNENABNNNANBN
26 neeq1 x=NAxyNAy
27 eleq2 x=NANxNNA
28 26 27 3anbi12d x=NAxyNxNyNAyNNANy
29 neeq2 y=BNNAyNABN
30 eleq2 y=BNNyNBN
31 29 30 3anbi13d y=BNNAyNNANyNABNNNANBN
32 28 31 rspc2ev NAEBNENABNNNANBNxEyExyNxNy
33 2 3 25 32 syl2an23an GUMGraphABNAEBNExEyExyNxNy