Metamath Proof Explorer


Theorem uneqin

Description: Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion uneqin AB=ABA=B

Proof

Step Hyp Ref Expression
1 eqimss AB=ABABAB
2 unss AABBABABAB
3 ssin AAABAAB
4 sstr AAABAB
5 3 4 sylbir AABAB
6 ssin BABBBAB
7 simpl BABBBA
8 6 7 sylbir BABBA
9 5 8 anim12i AABBABABBA
10 2 9 sylbir ABABABBA
11 1 10 syl AB=ABABBA
12 eqss A=BABBA
13 11 12 sylibr AB=ABA=B
14 unidm AA=A
15 inidm AA=A
16 14 15 eqtr4i AA=AA
17 uneq2 A=BAA=AB
18 ineq2 A=BAA=AB
19 16 17 18 3eqtr3a A=BAB=AB
20 13 19 impbii AB=ABA=B