Metamath Proof Explorer


Theorem unisalgen

Description: The union of a set belongs to the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses unisalgen.x φXV
unisalgen.s S=SalGenX
unisalgen.u U=X
Assertion unisalgen φUS

Proof

Step Hyp Ref Expression
1 unisalgen.x φXV
2 unisalgen.s S=SalGenX
3 unisalgen.u U=X
4 1 2 3 salgenuni φS=U
5 4 eqcomd φU=S
6 2 a1i φS=SalGenX
7 salgencl XVSalGenXSAlg
8 1 7 syl φSalGenXSAlg
9 6 8 eqeltrd φSSAlg
10 saluni SSAlgSS
11 9 10 syl φSS
12 5 11 eqeltrd φUS