Description: A version of unisn without the A e. _V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | unisn2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisng | |
|
2 | prid2g | |
|
3 | 1 2 | eqeltrd | |
4 | snprc | |
|
5 | 4 | biimpi | |
6 | 5 | unieqd | |
7 | uni0 | |
|
8 | 0ex | |
|
9 | 8 | prid1 | |
10 | 7 9 | eqeltri | |
11 | 6 10 | eqeltrdi | |
12 | 3 11 | pm2.61i | |