Metamath Proof Explorer


Theorem unisn2

Description: A version of unisn without the A e. _V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006)

Ref Expression
Assertion unisn2 AA

Proof

Step Hyp Ref Expression
1 unisng AVA=A
2 prid2g AVAA
3 1 2 eqeltrd AVAA
4 snprc ¬AVA=
5 4 biimpi ¬AVA=
6 5 unieqd ¬AVA=
7 uni0 =
8 0ex V
9 8 prid1 A
10 7 9 eqeltri A
11 6 10 eqeltrdi ¬AVAA
12 3 11 pm2.61i AA