Metamath Proof Explorer


Theorem unisucg

Description: A transitive class is equal to the union of its successor, closed form. Combines Theorem 4E of Enderton p. 72 and Exercise 6 of Enderton p. 73. (Contributed by NM, 30-Aug-1993) Generalize from unisuc . (Revised by BJ, 28-Dec-2024)

Ref Expression
Assertion unisucg AVTrAsucA=A

Proof

Step Hyp Ref Expression
1 ssequn1 AAAA=A
2 1 a1i AVAAAA=A
3 df-tr TrAAA
4 3 a1i AVTrAAA
5 unisucs AVsucA=AA
6 5 eqeq1d AVsucA=AAA=A
7 2 4 6 3bitr4d AVTrAsucA=A