Metamath Proof Explorer


Theorem unopadj

Description: The inverse (converse) of a unitary operator is its adjoint. Equation 2 of AkhiezerGlazman p. 72. (Contributed by NM, 22-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion unopadj TUniOpABTAihB=AihT-1B

Proof

Step Hyp Ref Expression
1 unopf1o TUniOpT:1-1 onto
2 f1ocnvfv2 T:1-1 ontoBTT-1B=B
3 1 2 sylan TUniOpBTT-1B=B
4 3 3adant2 TUniOpABTT-1B=B
5 4 oveq2d TUniOpABTAihTT-1B=TAihB
6 f1ocnv T:1-1 ontoT-1:1-1 onto
7 f1of T-1:1-1 ontoT-1:
8 1 6 7 3syl TUniOpT-1:
9 8 ffvelcdmda TUniOpBT-1B
10 9 3adant2 TUniOpABT-1B
11 unop TUniOpAT-1BTAihTT-1B=AihT-1B
12 10 11 syld3an3 TUniOpABTAihTT-1B=AihT-1B
13 5 12 eqtr3d TUniOpABTAihB=AihT-1B