| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uobeq2.b |
|
| 2 |
|
uobeq2.x |
|
| 3 |
|
uobeq2.f |
|
| 4 |
|
uobeq2.g |
|
| 5 |
|
uobeq2.y |
|
| 6 |
|
uobeq2.q |
|
| 7 |
|
uobeq2.s |
|
| 8 |
|
uobeq2.k |
|
| 9 |
|
uobeq2.1 |
|
| 10 |
|
eldmg |
|
| 11 |
10
|
ibi |
|
| 12 |
9 11
|
syl |
|
| 13 |
|
eqid |
|
| 14 |
2
|
adantr |
|
| 15 |
3
|
adantr |
|
| 16 |
8
|
adantr |
|
| 17 |
4
|
adantr |
|
| 18 |
5
|
adantr |
|
| 19 |
|
eqid |
|
| 20 |
6 19 13 7
|
catcsect |
|
| 21 |
20
|
simprbi |
|
| 22 |
21
|
adantl |
|
| 23 |
20
|
simplbi |
|
| 24 |
23
|
simprd |
|
| 25 |
6 19 24
|
elcatchom |
|
| 26 |
25
|
adantl |
|
| 27 |
1 13 14 15 16 17 18 22 26
|
uobeq |
Could not format ( ( ph /\ K ( D S E ) l ) -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) : No typesetting found for |- ( ( ph /\ K ( D S E ) l ) -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) with typecode |- |
| 28 |
12 27
|
exlimddv |
Could not format ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) : No typesetting found for |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) with typecode |- |