Step |
Hyp |
Ref |
Expression |
1 |
|
upcic.b |
|
2 |
|
upcic.c |
|
3 |
|
upcic.h |
|
4 |
|
upcic.j |
|
5 |
|
upcic.o |
|
6 |
|
upcic.f |
|
7 |
|
upcic.x |
|
8 |
|
upcic.y |
|
9 |
|
upcic.z |
|
10 |
|
upcic.m |
|
11 |
|
upcic.1 |
|
12 |
|
upcic.n |
|
13 |
|
upcic.2 |
|
14 |
11 8 12
|
upciclem1 |
|
15 |
|
reurex |
|
16 |
14 15
|
syl |
|
17 |
|
simpl |
|
18 |
13 7 10
|
upciclem1 |
|
19 |
|
reurex |
|
20 |
17 18 19
|
3syl |
|
21 |
|
eqid |
|
22 |
6
|
ad2antrr |
|
23 |
22
|
funcrcl2 |
|
24 |
7
|
ad2antrr |
|
25 |
8
|
ad2antrr |
|
26 |
|
eqid |
|
27 |
|
eqid |
|
28 |
|
simplrl |
|
29 |
|
simprl |
|
30 |
9
|
ad2antrr |
|
31 |
10
|
ad2antrr |
|
32 |
11
|
ad2antrr |
|
33 |
|
simprr |
|
34 |
|
simplrr |
|
35 |
1 2 3 4 5 22 24 25 30 31 32 26 28 29 33 34
|
upciclem3 |
|
36 |
12
|
ad2antrr |
|
37 |
13
|
ad2antrr |
|
38 |
1 2 3 4 5 22 25 24 30 36 37 26 29 28 34 33
|
upciclem3 |
|
39 |
1 3 26 21 27 23 24 25 28 29 35 38
|
isisod |
|
40 |
21 1 23 24 25 39
|
brcici |
|
41 |
20 40
|
rexlimddv |
|
42 |
16 41
|
rexlimddv |
|
43 |
20 39
|
rexlimddv |
|
44 |
|
simprr |
|
45 |
16 43 44
|
reximssdv |
|
46 |
|
fveq2 |
|
47 |
46
|
oveq1d |
|
48 |
47
|
eqeq2d |
|
49 |
48
|
cbvrexvw |
|
50 |
45 49
|
sylib |
|
51 |
42 50
|
jca |
|