| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upcic.b |
|
| 2 |
|
upcic.c |
|
| 3 |
|
upcic.h |
|
| 4 |
|
upcic.j |
|
| 5 |
|
upcic.o |
|
| 6 |
|
upcic.f |
|
| 7 |
|
upcic.x |
|
| 8 |
|
upcic.y |
|
| 9 |
|
upcic.z |
|
| 10 |
|
upcic.m |
|
| 11 |
|
upcic.1 |
|
| 12 |
|
upcic.n |
|
| 13 |
|
upcic.2 |
|
| 14 |
11 8 12
|
upciclem1 |
|
| 15 |
|
reurex |
|
| 16 |
14 15
|
syl |
|
| 17 |
|
simpl |
|
| 18 |
13 7 10
|
upciclem1 |
|
| 19 |
|
reurex |
|
| 20 |
17 18 19
|
3syl |
|
| 21 |
|
eqid |
|
| 22 |
6
|
ad2antrr |
|
| 23 |
22
|
funcrcl2 |
|
| 24 |
7
|
ad2antrr |
|
| 25 |
8
|
ad2antrr |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
|
simplrl |
|
| 29 |
|
simprl |
|
| 30 |
9
|
ad2antrr |
|
| 31 |
10
|
ad2antrr |
|
| 32 |
11
|
ad2antrr |
|
| 33 |
|
simprr |
|
| 34 |
|
simplrr |
|
| 35 |
1 2 3 4 5 22 24 25 30 31 32 26 28 29 33 34
|
upciclem3 |
|
| 36 |
12
|
ad2antrr |
|
| 37 |
13
|
ad2antrr |
|
| 38 |
1 2 3 4 5 22 25 24 30 36 37 26 29 28 34 33
|
upciclem3 |
|
| 39 |
1 3 26 21 27 23 24 25 28 29 35 38
|
isisod |
|
| 40 |
21 1 23 24 25 39
|
brcici |
|
| 41 |
20 40
|
rexlimddv |
|
| 42 |
16 41
|
rexlimddv |
|
| 43 |
20 39
|
rexlimddv |
|
| 44 |
|
simprr |
|
| 45 |
16 43 44
|
reximssdv |
|
| 46 |
|
fveq2 |
|
| 47 |
46
|
oveq1d |
|
| 48 |
47
|
eqeq2d |
|
| 49 |
48
|
cbvrexvw |
|
| 50 |
45 49
|
sylib |
|
| 51 |
42 50
|
jca |
|