Metamath Proof Explorer


Theorem upgrwlkdvspth

Description: A walk consisting of different vertices is a simple path. Notice that this theorem would not hold for arbitrary hypergraphs, see the counterexample given in the comment of upgrspthswlk . (Contributed by Alexander van der Vekens, 27-Oct-2017) (Revised by AV, 17-Jan-2021)

Ref Expression
Assertion upgrwlkdvspth G UPGraph F Walks G P Fun P -1 F SPaths G P

Proof

Step Hyp Ref Expression
1 3simpc G UPGraph F Walks G P Fun P -1 F Walks G P Fun P -1
2 upgrspthswlk G UPGraph SPaths G = f p | f Walks G p Fun p -1
3 2 3ad2ant1 G UPGraph F Walks G P Fun P -1 SPaths G = f p | f Walks G p Fun p -1
4 3 breqd G UPGraph F Walks G P Fun P -1 F SPaths G P F f p | f Walks G p Fun p -1 P
5 wlkv F Walks G P G V F V P V
6 3simpc G V F V P V F V P V
7 5 6 syl F Walks G P F V P V
8 7 3ad2ant2 G UPGraph F Walks G P Fun P -1 F V P V
9 breq12 f = F p = P f Walks G p F Walks G P
10 cnveq p = P p -1 = P -1
11 10 funeqd p = P Fun p -1 Fun P -1
12 11 adantl f = F p = P Fun p -1 Fun P -1
13 9 12 anbi12d f = F p = P f Walks G p Fun p -1 F Walks G P Fun P -1
14 eqid f p | f Walks G p Fun p -1 = f p | f Walks G p Fun p -1
15 13 14 brabga F V P V F f p | f Walks G p Fun p -1 P F Walks G P Fun P -1
16 8 15 syl G UPGraph F Walks G P Fun P -1 F f p | f Walks G p Fun p -1 P F Walks G P Fun P -1
17 4 16 bitrd G UPGraph F Walks G P Fun P -1 F SPaths G P F Walks G P Fun P -1
18 1 17 mpbird G UPGraph F Walks G P Fun P -1 F SPaths G P