Metamath Proof Explorer


Theorem upgrwlkdvspth

Description: A walk consisting of different vertices is a simple path. Notice that this theorem would not hold for arbitrary hypergraphs, see the counterexample given in the comment of upgrspthswlk . (Contributed by Alexander van der Vekens, 27-Oct-2017) (Revised by AV, 17-Jan-2021)

Ref Expression
Assertion upgrwlkdvspth GUPGraphFWalksGPFunP-1FSPathsGP

Proof

Step Hyp Ref Expression
1 3simpc GUPGraphFWalksGPFunP-1FWalksGPFunP-1
2 upgrspthswlk GUPGraphSPathsG=fp|fWalksGpFunp-1
3 2 3ad2ant1 GUPGraphFWalksGPFunP-1SPathsG=fp|fWalksGpFunp-1
4 3 breqd GUPGraphFWalksGPFunP-1FSPathsGPFfp|fWalksGpFunp-1P
5 wlkv FWalksGPGVFVPV
6 3simpc GVFVPVFVPV
7 5 6 syl FWalksGPFVPV
8 7 3ad2ant2 GUPGraphFWalksGPFunP-1FVPV
9 breq12 f=Fp=PfWalksGpFWalksGP
10 cnveq p=Pp-1=P-1
11 10 funeqd p=PFunp-1FunP-1
12 11 adantl f=Fp=PFunp-1FunP-1
13 9 12 anbi12d f=Fp=PfWalksGpFunp-1FWalksGPFunP-1
14 eqid fp|fWalksGpFunp-1=fp|fWalksGpFunp-1
15 13 14 brabga FVPVFfp|fWalksGpFunp-1PFWalksGPFunP-1
16 8 15 syl GUPGraphFWalksGPFunP-1Ffp|fWalksGpFunp-1PFWalksGPFunP-1
17 4 16 bitrd GUPGraphFWalksGPFunP-1FSPathsGPFWalksGPFunP-1
18 1 17 mpbird GUPGraphFWalksGPFunP-1FSPathsGP