Metamath Proof Explorer


Theorem upwlkwlk

Description: A simple walk is a walk. (Contributed by AV, 30-Dec-2020) (Proof shortened by AV, 27-Feb-2021)

Ref Expression
Assertion upwlkwlk FUPWalksGPFWalksGP

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid iEdgG=iEdgG
3 1 2 upwlkbprop FUPWalksGPGVFVPV
4 idd GVFVPVFWorddomiEdgGFWorddomiEdgG
5 idd GVFVPVP:0FVtxGP:0FVtxG
6 ifpprsnss iEdgGFk=PkPk+1if-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFk
7 6 a1i GVFVPVk0..^FiEdgGFk=PkPk+1if-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFk
8 7 ralimdva GVFVPVk0..^FiEdgGFk=PkPk+1k0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFk
9 4 5 8 3anim123d GVFVPVFWorddomiEdgGP:0FVtxGk0..^FiEdgGFk=PkPk+1FWorddomiEdgGP:0FVtxGk0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFk
10 1 2 isupwlk GVFVPVFUPWalksGPFWorddomiEdgGP:0FVtxGk0..^FiEdgGFk=PkPk+1
11 1 2 iswlk GVFVPVFWalksGPFWorddomiEdgGP:0FVtxGk0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFk
12 9 10 11 3imtr4d GVFVPVFUPWalksGPFWalksGP
13 3 12 mpcom FUPWalksGPFWalksGP