Description: A simple walk is a walk. (Contributed by AV, 30-Dec-2020) (Proof shortened by AV, 27-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | upwlkwlk | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | 1 2 | upwlkbprop | |
4 | idd | |
|
5 | idd | |
|
6 | ifpprsnss | |
|
7 | 6 | a1i | |
8 | 7 | ralimdva | |
9 | 4 5 8 | 3anim123d | |
10 | 1 2 | isupwlk | |
11 | 1 2 | iswlk | |
12 | 9 10 11 | 3imtr4d | |
13 | 3 12 | mpcom | |