Metamath Proof Explorer


Theorem usgr1e

Description: A simple graph with one edge (with additional assumption that B =/= C since otherwise the edge is a loop!). (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 18-Oct-2020)

Ref Expression
Hypotheses uspgr1e.v V=VtxG
uspgr1e.a φAX
uspgr1e.b φBV
uspgr1e.c φCV
uspgr1e.e φiEdgG=ABC
usgr1e.e φBC
Assertion usgr1e φGUSGraph

Proof

Step Hyp Ref Expression
1 uspgr1e.v V=VtxG
2 uspgr1e.a φAX
3 uspgr1e.b φBV
4 uspgr1e.c φCV
5 uspgr1e.e φiEdgG=ABC
6 usgr1e.e φBC
7 1 2 3 4 5 uspgr1e φGUSHGraph
8 hashprg BVCVBCBC=2
9 3 4 8 syl2anc φBCBC=2
10 6 9 mpbid φBC=2
11 prex BCV
12 fveqeq2 x=BCx=2BC=2
13 11 12 ralsn xBCx=2BC=2
14 10 13 sylibr φxBCx=2
15 edgval EdgG=raniEdgG
16 15 a1i φEdgG=raniEdgG
17 5 rneqd φraniEdgG=ranABC
18 rnsnopg AXranABC=BC
19 2 18 syl φranABC=BC
20 16 17 19 3eqtrd φEdgG=BC
21 20 raleqdv φxEdgGx=2xBCx=2
22 14 21 mpbird φxEdgGx=2
23 usgruspgrb GUSGraphGUSHGraphxEdgGx=2
24 7 22 23 sylanbrc φGUSGraph