Metamath Proof Explorer


Theorem usgredg2ALT

Description: Alternate proof of usgredg2 , not using umgredg2 . (Contributed by Alexander van der Vekens, 11-Aug-2017) (Revised by AV, 16-Oct-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis usgredg2.e E=iEdgG
Assertion usgredg2ALT GUSGraphXdomEEX=2

Proof

Step Hyp Ref Expression
1 usgredg2.e E=iEdgG
2 eqid VtxG=VtxG
3 2 1 usgrf GUSGraphE:domE1-1x𝒫VtxG|x=2
4 f1f E:domE1-1x𝒫VtxG|x=2E:domEx𝒫VtxG|x=2
5 3 4 syl GUSGraphE:domEx𝒫VtxG|x=2
6 5 ffvelcdmda GUSGraphXdomEEXx𝒫VtxG|x=2
7 fveq2 x=EXx=EX
8 7 eqeq1d x=EXx=2EX=2
9 8 elrab EXx𝒫VtxG|x=2EX𝒫VtxGEX=2
10 9 simprbi EXx𝒫VtxG|x=2EX=2
11 6 10 syl GUSGraphXdomEEX=2