Metamath Proof Explorer


Theorem usgredg2vlem2

Description: Lemma 2 for usgredg2v . (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020)

Ref Expression
Hypotheses usgredg2v.v V=VtxG
usgredg2v.e E=iEdgG
usgredg2v.a A=xdomE|NEx
Assertion usgredg2vlem2 GUSGraphYAI=ιzV|EY=zNEY=IN

Proof

Step Hyp Ref Expression
1 usgredg2v.v V=VtxG
2 usgredg2v.e E=iEdgG
3 usgredg2v.a A=xdomE|NEx
4 fveq2 x=YEx=EY
5 4 eleq2d x=YNExNEY
6 5 3 elrab2 YAYdomENEY
7 6 biimpi YAYdomENEY
8 1 2 usgredgreu GUSGraphYdomENEY∃!zVEY=Nz
9 8 3expb GUSGraphYdomENEY∃!zVEY=Nz
10 1 2 3 usgredg2vlem1 GUSGraphYAιzV|EY=zNV
11 10 adantlr GUSGraphYdomENEYYAιzV|EY=zNV
12 11 ad4ant23 ∃!zVEY=NzGUSGraphYdomENEYYAI=ιzV|EY=zNιzV|EY=zNV
13 eleq1 I=ιzV|EY=zNIVιzV|EY=zNV
14 13 adantl ∃!zVEY=NzGUSGraphYdomENEYYAI=ιzV|EY=zNIVιzV|EY=zNV
15 12 14 mpbird ∃!zVEY=NzGUSGraphYdomENEYYAI=ιzV|EY=zNIV
16 prcom Nz=zN
17 16 eqeq2i EY=NzEY=zN
18 17 reubii ∃!zVEY=Nz∃!zVEY=zN
19 18 biimpi ∃!zVEY=Nz∃!zVEY=zN
20 19 ad3antrrr ∃!zVEY=NzGUSGraphYdomENEYYAI=ιzV|EY=zN∃!zVEY=zN
21 preq1 z=IzN=IN
22 21 eqeq2d z=IEY=zNEY=IN
23 22 riota2 IV∃!zVEY=zNEY=INιzV|EY=zN=I
24 15 20 23 syl2anc ∃!zVEY=NzGUSGraphYdomENEYYAI=ιzV|EY=zNEY=INιzV|EY=zN=I
25 24 exbiri ∃!zVEY=NzGUSGraphYdomENEYYAI=ιzV|EY=zNιzV|EY=zN=IEY=IN
26 25 com13 ιzV|EY=zN=II=ιzV|EY=zN∃!zVEY=NzGUSGraphYdomENEYYAEY=IN
27 26 eqcoms I=ιzV|EY=zNI=ιzV|EY=zN∃!zVEY=NzGUSGraphYdomENEYYAEY=IN
28 27 pm2.43i I=ιzV|EY=zN∃!zVEY=NzGUSGraphYdomENEYYAEY=IN
29 28 expdcom ∃!zVEY=NzGUSGraphYdomENEYYAI=ιzV|EY=zNEY=IN
30 9 29 mpancom GUSGraphYdomENEYYAI=ιzV|EY=zNEY=IN
31 30 expcom YdomENEYGUSGraphYAI=ιzV|EY=zNEY=IN
32 31 com23 YdomENEYYAGUSGraphI=ιzV|EY=zNEY=IN
33 7 32 mpcom YAGUSGraphI=ιzV|EY=zNEY=IN
34 33 impcom GUSGraphYAI=ιzV|EY=zNEY=IN