Metamath Proof Explorer


Theorem usgrexmpl12ngrlic

Description: The graphs H and G are not locally isomorphic ( H contains a triangle, see usgrexmpl1tri , whereas G does not, see usgrexmpl2trifr . (Contributed by AV, 24-Aug-2025)

Ref Expression
Hypotheses usgrexmpl2.v V = 0 5
usgrexmpl2.e E = ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩
usgrexmpl2.g G = V E
usgrexmpl1.k K = ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩
usgrexmpl1.h H = V K
Assertion usgrexmpl12ngrlic ¬ G 𝑙𝑔𝑟 H

Proof

Step Hyp Ref Expression
1 usgrexmpl2.v V = 0 5
2 usgrexmpl2.e E = ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩
3 usgrexmpl2.g G = V E
4 usgrexmpl1.k K = ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩
5 usgrexmpl1.h H = V K
6 1 2 3 usgrexmpl2 G USGraph
7 usgruhgr G USGraph G UHGraph
8 grlicsym G UHGraph G 𝑙𝑔𝑟 H H 𝑙𝑔𝑟 G
9 6 7 8 mp2b G 𝑙𝑔𝑟 H H 𝑙𝑔𝑟 G
10 1 4 5 usgrexmpl1tri Could not format { 0 , 1 , 2 } e. ( GrTriangles ` H ) : No typesetting found for |- { 0 , 1 , 2 } e. ( GrTriangles ` H ) with typecode |-
11 brgrlic H 𝑙𝑔𝑟 G H GraphLocIso G
12 n0 H GraphLocIso G f f H GraphLocIso G
13 11 12 bitri H 𝑙𝑔𝑟 G f f H GraphLocIso G
14 1 2 3 usgrexmpl2trifr Could not format -. E. t t e. ( GrTriangles ` G ) : No typesetting found for |- -. E. t t e. ( GrTriangles ` G ) with typecode |-
15 1 4 5 usgrexmpl1 H USGraph
16 usgruspgr H USGraph H USHGraph
17 15 16 mp1i Could not format ( ( f e. ( H GraphLocIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> H e. USPGraph ) : No typesetting found for |- ( ( f e. ( H GraphLocIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> H e. USPGraph ) with typecode |-
18 usgruspgr G USGraph G USHGraph
19 6 18 mp1i Could not format ( ( f e. ( H GraphLocIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> G e. USPGraph ) : No typesetting found for |- ( ( f e. ( H GraphLocIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> G e. USPGraph ) with typecode |-
20 simpl Could not format ( ( f e. ( H GraphLocIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> f e. ( H GraphLocIso G ) ) : No typesetting found for |- ( ( f e. ( H GraphLocIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> f e. ( H GraphLocIso G ) ) with typecode |-
21 simpr Could not format ( ( f e. ( H GraphLocIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) : No typesetting found for |- ( ( f e. ( H GraphLocIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) with typecode |-
22 17 19 20 21 grlimgrtri Could not format ( ( f e. ( H GraphLocIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> E. t t e. ( GrTriangles ` G ) ) : No typesetting found for |- ( ( f e. ( H GraphLocIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> E. t t e. ( GrTriangles ` G ) ) with typecode |-
23 22 ex Could not format ( f e. ( H GraphLocIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> E. t t e. ( GrTriangles ` G ) ) ) : No typesetting found for |- ( f e. ( H GraphLocIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> E. t t e. ( GrTriangles ` G ) ) ) with typecode |-
24 pm2.21 Could not format ( -. E. t t e. ( GrTriangles ` G ) -> ( E. t t e. ( GrTriangles ` G ) -> -. G ~=lgr H ) ) : No typesetting found for |- ( -. E. t t e. ( GrTriangles ` G ) -> ( E. t t e. ( GrTriangles ` G ) -> -. G ~=lgr H ) ) with typecode |-
25 14 23 24 mpsylsyld Could not format ( f e. ( H GraphLocIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=lgr H ) ) : No typesetting found for |- ( f e. ( H GraphLocIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=lgr H ) ) with typecode |-
26 25 exlimiv Could not format ( E. f f e. ( H GraphLocIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=lgr H ) ) : No typesetting found for |- ( E. f f e. ( H GraphLocIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=lgr H ) ) with typecode |-
27 13 26 sylbi Could not format ( H ~=lgr G -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=lgr H ) ) : No typesetting found for |- ( H ~=lgr G -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=lgr H ) ) with typecode |-
28 9 10 27 mpisyl G 𝑙𝑔𝑟 H ¬ G 𝑙𝑔𝑟 H
29 28 pm2.01i ¬ G 𝑙𝑔𝑟 H