Step |
Hyp |
Ref |
Expression |
1 |
|
usgrexmpl2.v |
⊢ 𝑉 = ( 0 ... 5 ) |
2 |
|
usgrexmpl2.e |
⊢ 𝐸 = 〈“ { 0 , 1 } { 1 , 2 } { 2 , 3 } { 3 , 4 } { 4 , 5 } { 0 , 3 } { 0 , 5 } ”〉 |
3 |
|
usgrexmpl2.g |
⊢ 𝐺 = 〈 𝑉 , 𝐸 〉 |
4 |
|
usgrexmpl1.k |
⊢ 𝐾 = 〈“ { 0 , 1 } { 0 , 2 } { 1 , 2 } { 0 , 3 } { 3 , 4 } { 3 , 5 } { 4 , 5 } ”〉 |
5 |
|
usgrexmpl1.h |
⊢ 𝐻 = 〈 𝑉 , 𝐾 〉 |
6 |
1 2 3
|
usgrexmpl2 |
⊢ 𝐺 ∈ USGraph |
7 |
|
usgruhgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UHGraph ) |
8 |
|
grlicsym |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ≃𝑙𝑔𝑟 𝐻 → 𝐻 ≃𝑙𝑔𝑟 𝐺 ) ) |
9 |
6 7 8
|
mp2b |
⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝐻 → 𝐻 ≃𝑙𝑔𝑟 𝐺 ) |
10 |
1 4 5
|
usgrexmpl1tri |
⊢ { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) |
11 |
|
brgrlic |
⊢ ( 𝐻 ≃𝑙𝑔𝑟 𝐺 ↔ ( 𝐻 GraphLocIso 𝐺 ) ≠ ∅ ) |
12 |
|
n0 |
⊢ ( ( 𝐻 GraphLocIso 𝐺 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐻 GraphLocIso 𝐺 ) ) |
13 |
11 12
|
bitri |
⊢ ( 𝐻 ≃𝑙𝑔𝑟 𝐺 ↔ ∃ 𝑓 𝑓 ∈ ( 𝐻 GraphLocIso 𝐺 ) ) |
14 |
1 2 3
|
usgrexmpl2trifr |
⊢ ¬ ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) |
15 |
1 4 5
|
usgrexmpl1 |
⊢ 𝐻 ∈ USGraph |
16 |
|
usgruspgr |
⊢ ( 𝐻 ∈ USGraph → 𝐻 ∈ USPGraph ) |
17 |
15 16
|
mp1i |
⊢ ( ( 𝑓 ∈ ( 𝐻 GraphLocIso 𝐺 ) ∧ { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) ) → 𝐻 ∈ USPGraph ) |
18 |
|
usgruspgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ USPGraph ) |
19 |
6 18
|
mp1i |
⊢ ( ( 𝑓 ∈ ( 𝐻 GraphLocIso 𝐺 ) ∧ { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) ) → 𝐺 ∈ USPGraph ) |
20 |
|
simpl |
⊢ ( ( 𝑓 ∈ ( 𝐻 GraphLocIso 𝐺 ) ∧ { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) ) → 𝑓 ∈ ( 𝐻 GraphLocIso 𝐺 ) ) |
21 |
|
simpr |
⊢ ( ( 𝑓 ∈ ( 𝐻 GraphLocIso 𝐺 ) ∧ { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) ) → { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) ) |
22 |
17 19 20 21
|
grlimgrtri |
⊢ ( ( 𝑓 ∈ ( 𝐻 GraphLocIso 𝐺 ) ∧ { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) ) → ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ) |
23 |
22
|
ex |
⊢ ( 𝑓 ∈ ( 𝐻 GraphLocIso 𝐺 ) → ( { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) → ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ) ) |
24 |
|
pm2.21 |
⊢ ( ¬ ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) → ( ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) → ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻 ) ) |
25 |
14 23 24
|
mpsylsyld |
⊢ ( 𝑓 ∈ ( 𝐻 GraphLocIso 𝐺 ) → ( { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) → ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻 ) ) |
26 |
25
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝐻 GraphLocIso 𝐺 ) → ( { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) → ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻 ) ) |
27 |
13 26
|
sylbi |
⊢ ( 𝐻 ≃𝑙𝑔𝑟 𝐺 → ( { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) → ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻 ) ) |
28 |
9 10 27
|
mpisyl |
⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝐻 → ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻 ) |
29 |
28
|
pm2.01i |
⊢ ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻 |