Step |
Hyp |
Ref |
Expression |
1 |
|
usgrexmpl2.v |
|- V = ( 0 ... 5 ) |
2 |
|
usgrexmpl2.e |
|- E = <" { 0 , 1 } { 1 , 2 } { 2 , 3 } { 3 , 4 } { 4 , 5 } { 0 , 3 } { 0 , 5 } "> |
3 |
|
usgrexmpl2.g |
|- G = <. V , E >. |
4 |
|
usgrexmpl1.k |
|- K = <" { 0 , 1 } { 0 , 2 } { 1 , 2 } { 0 , 3 } { 3 , 4 } { 3 , 5 } { 4 , 5 } "> |
5 |
|
usgrexmpl1.h |
|- H = <. V , K >. |
6 |
1 2 3
|
usgrexmpl2 |
|- G e. USGraph |
7 |
|
usgruhgr |
|- ( G e. USGraph -> G e. UHGraph ) |
8 |
|
grlicsym |
|- ( G e. UHGraph -> ( G ~=lgr H -> H ~=lgr G ) ) |
9 |
6 7 8
|
mp2b |
|- ( G ~=lgr H -> H ~=lgr G ) |
10 |
1 4 5
|
usgrexmpl1tri |
|- { 0 , 1 , 2 } e. ( GrTriangles ` H ) |
11 |
|
brgrlic |
|- ( H ~=lgr G <-> ( H GraphLocIso G ) =/= (/) ) |
12 |
|
n0 |
|- ( ( H GraphLocIso G ) =/= (/) <-> E. f f e. ( H GraphLocIso G ) ) |
13 |
11 12
|
bitri |
|- ( H ~=lgr G <-> E. f f e. ( H GraphLocIso G ) ) |
14 |
1 2 3
|
usgrexmpl2trifr |
|- -. E. t t e. ( GrTriangles ` G ) |
15 |
1 4 5
|
usgrexmpl1 |
|- H e. USGraph |
16 |
|
usgruspgr |
|- ( H e. USGraph -> H e. USPGraph ) |
17 |
15 16
|
mp1i |
|- ( ( f e. ( H GraphLocIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> H e. USPGraph ) |
18 |
|
usgruspgr |
|- ( G e. USGraph -> G e. USPGraph ) |
19 |
6 18
|
mp1i |
|- ( ( f e. ( H GraphLocIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> G e. USPGraph ) |
20 |
|
simpl |
|- ( ( f e. ( H GraphLocIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> f e. ( H GraphLocIso G ) ) |
21 |
|
simpr |
|- ( ( f e. ( H GraphLocIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) |
22 |
17 19 20 21
|
grlimgrtri |
|- ( ( f e. ( H GraphLocIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> E. t t e. ( GrTriangles ` G ) ) |
23 |
22
|
ex |
|- ( f e. ( H GraphLocIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> E. t t e. ( GrTriangles ` G ) ) ) |
24 |
|
pm2.21 |
|- ( -. E. t t e. ( GrTriangles ` G ) -> ( E. t t e. ( GrTriangles ` G ) -> -. G ~=lgr H ) ) |
25 |
14 23 24
|
mpsylsyld |
|- ( f e. ( H GraphLocIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=lgr H ) ) |
26 |
25
|
exlimiv |
|- ( E. f f e. ( H GraphLocIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=lgr H ) ) |
27 |
13 26
|
sylbi |
|- ( H ~=lgr G -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=lgr H ) ) |
28 |
9 10 27
|
mpisyl |
|- ( G ~=lgr H -> -. G ~=lgr H ) |
29 |
28
|
pm2.01i |
|- -. G ~=lgr H |