Step |
Hyp |
Ref |
Expression |
1 |
|
usgrexmpl2.v |
|- V = ( 0 ... 5 ) |
2 |
|
usgrexmpl2.e |
|- E = <" { 0 , 1 } { 1 , 2 } { 2 , 3 } { 3 , 4 } { 4 , 5 } { 0 , 3 } { 0 , 5 } "> |
3 |
|
usgrexmpl2.g |
|- G = <. V , E >. |
4 |
1 2 3
|
usgrexmpl2nb0 |
|- ( G NeighbVtx 0 ) = { 1 , 3 , 5 } |
5 |
4
|
eleq2i |
|- ( b e. ( G NeighbVtx 0 ) <-> b e. { 1 , 3 , 5 } ) |
6 |
|
vex |
|- b e. _V |
7 |
6
|
eltp |
|- ( b e. { 1 , 3 , 5 } <-> ( b = 1 \/ b = 3 \/ b = 5 ) ) |
8 |
5 7
|
bitri |
|- ( b e. ( G NeighbVtx 0 ) <-> ( b = 1 \/ b = 3 \/ b = 5 ) ) |
9 |
4
|
eleq2i |
|- ( c e. ( G NeighbVtx 0 ) <-> c e. { 1 , 3 , 5 } ) |
10 |
|
vex |
|- c e. _V |
11 |
10
|
eltp |
|- ( c e. { 1 , 3 , 5 } <-> ( c = 1 \/ c = 3 \/ c = 5 ) ) |
12 |
9 11
|
bitri |
|- ( c e. ( G NeighbVtx 0 ) <-> ( c = 1 \/ c = 3 \/ c = 5 ) ) |
13 |
|
eqtr3 |
|- ( ( b = 1 /\ c = 1 ) -> b = c ) |
14 |
13
|
orcd |
|- ( ( b = 1 /\ c = 1 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
15 |
|
ax-1ne0 |
|- 1 =/= 0 |
16 |
|
neeq1 |
|- ( b = 1 -> ( b =/= 0 <-> 1 =/= 0 ) ) |
17 |
15 16
|
mpbiri |
|- ( b = 1 -> b =/= 0 ) |
18 |
17
|
adantr |
|- ( ( b = 1 /\ c = 3 ) -> b =/= 0 ) |
19 |
18
|
neneqd |
|- ( ( b = 1 /\ c = 3 ) -> -. b = 0 ) |
20 |
19
|
orcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
21 |
|
3ne0 |
|- 3 =/= 0 |
22 |
|
neeq1 |
|- ( c = 3 -> ( c =/= 0 <-> 3 =/= 0 ) ) |
23 |
21 22
|
mpbiri |
|- ( c = 3 -> c =/= 0 ) |
24 |
23
|
adantl |
|- ( ( b = 1 /\ c = 3 ) -> c =/= 0 ) |
25 |
24
|
neneqd |
|- ( ( b = 1 /\ c = 3 ) -> -. c = 0 ) |
26 |
25
|
olcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
27 |
19
|
orcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
28 |
25
|
olcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
29 |
27 28
|
jca |
|- ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
30 |
|
2re |
|- 2 e. RR |
31 |
|
2lt3 |
|- 2 < 3 |
32 |
30 31
|
gtneii |
|- 3 =/= 2 |
33 |
|
neeq1 |
|- ( c = 3 -> ( c =/= 2 <-> 3 =/= 2 ) ) |
34 |
32 33
|
mpbiri |
|- ( c = 3 -> c =/= 2 ) |
35 |
34
|
adantl |
|- ( ( b = 1 /\ c = 3 ) -> c =/= 2 ) |
36 |
35
|
neneqd |
|- ( ( b = 1 /\ c = 3 ) -> -. c = 2 ) |
37 |
36
|
olcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
38 |
|
1re |
|- 1 e. RR |
39 |
|
1lt3 |
|- 1 < 3 |
40 |
38 39
|
gtneii |
|- 3 =/= 1 |
41 |
|
neeq1 |
|- ( c = 3 -> ( c =/= 1 <-> 3 =/= 1 ) ) |
42 |
40 41
|
mpbiri |
|- ( c = 3 -> c =/= 1 ) |
43 |
42
|
adantl |
|- ( ( b = 1 /\ c = 3 ) -> c =/= 1 ) |
44 |
43
|
neneqd |
|- ( ( b = 1 /\ c = 3 ) -> -. c = 1 ) |
45 |
44
|
olcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
46 |
37 45
|
jca |
|- ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
47 |
|
1ne2 |
|- 1 =/= 2 |
48 |
|
neeq1 |
|- ( b = 1 -> ( b =/= 2 <-> 1 =/= 2 ) ) |
49 |
47 48
|
mpbiri |
|- ( b = 1 -> b =/= 2 ) |
50 |
49
|
adantr |
|- ( ( b = 1 /\ c = 3 ) -> b =/= 2 ) |
51 |
50
|
neneqd |
|- ( ( b = 1 /\ c = 3 ) -> -. b = 2 ) |
52 |
51
|
orcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
53 |
36
|
olcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
54 |
52 53
|
jca |
|- ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
55 |
29 46 54
|
3jca |
|- ( ( b = 1 /\ c = 3 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
56 |
38 39
|
ltneii |
|- 1 =/= 3 |
57 |
|
neeq1 |
|- ( b = 1 -> ( b =/= 3 <-> 1 =/= 3 ) ) |
58 |
56 57
|
mpbiri |
|- ( b = 1 -> b =/= 3 ) |
59 |
58
|
adantr |
|- ( ( b = 1 /\ c = 3 ) -> b =/= 3 ) |
60 |
59
|
neneqd |
|- ( ( b = 1 /\ c = 3 ) -> -. b = 3 ) |
61 |
60
|
orcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
62 |
|
1lt4 |
|- 1 < 4 |
63 |
38 62
|
ltneii |
|- 1 =/= 4 |
64 |
|
neeq1 |
|- ( b = 1 -> ( b =/= 4 <-> 1 =/= 4 ) ) |
65 |
63 64
|
mpbiri |
|- ( b = 1 -> b =/= 4 ) |
66 |
65
|
adantr |
|- ( ( b = 1 /\ c = 3 ) -> b =/= 4 ) |
67 |
66
|
neneqd |
|- ( ( b = 1 /\ c = 3 ) -> -. b = 4 ) |
68 |
67
|
orcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
69 |
61 68
|
jca |
|- ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
70 |
67
|
orcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
71 |
|
1lt5 |
|- 1 < 5 |
72 |
38 71
|
ltneii |
|- 1 =/= 5 |
73 |
|
neeq1 |
|- ( b = 1 -> ( b =/= 5 <-> 1 =/= 5 ) ) |
74 |
72 73
|
mpbiri |
|- ( b = 1 -> b =/= 5 ) |
75 |
74
|
adantr |
|- ( ( b = 1 /\ c = 3 ) -> b =/= 5 ) |
76 |
75
|
neneqd |
|- ( ( b = 1 /\ c = 3 ) -> -. b = 5 ) |
77 |
76
|
orcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
78 |
70 77
|
jca |
|- ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
79 |
19
|
orcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
80 |
25
|
olcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
81 |
79 80
|
jca |
|- ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
82 |
69 78 81
|
3jca |
|- ( ( b = 1 /\ c = 3 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
83 |
55 82
|
jca |
|- ( ( b = 1 /\ c = 3 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
84 |
20 26 83
|
jca31 |
|- ( ( b = 1 /\ c = 3 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
85 |
84
|
olcd |
|- ( ( b = 1 /\ c = 3 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
86 |
17
|
adantr |
|- ( ( b = 1 /\ c = 5 ) -> b =/= 0 ) |
87 |
86
|
neneqd |
|- ( ( b = 1 /\ c = 5 ) -> -. b = 0 ) |
88 |
87
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
89 |
58
|
adantr |
|- ( ( b = 1 /\ c = 5 ) -> b =/= 3 ) |
90 |
89
|
neneqd |
|- ( ( b = 1 /\ c = 5 ) -> -. b = 3 ) |
91 |
90
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
92 |
87
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
93 |
|
0re |
|- 0 e. RR |
94 |
|
5pos |
|- 0 < 5 |
95 |
93 94
|
gtneii |
|- 5 =/= 0 |
96 |
|
neeq1 |
|- ( c = 5 -> ( c =/= 0 <-> 5 =/= 0 ) ) |
97 |
95 96
|
mpbiri |
|- ( c = 5 -> c =/= 0 ) |
98 |
97
|
adantl |
|- ( ( b = 1 /\ c = 5 ) -> c =/= 0 ) |
99 |
98
|
neneqd |
|- ( ( b = 1 /\ c = 5 ) -> -. c = 0 ) |
100 |
99
|
olcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
101 |
92 100
|
jca |
|- ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
102 |
|
2lt5 |
|- 2 < 5 |
103 |
30 102
|
gtneii |
|- 5 =/= 2 |
104 |
|
neeq1 |
|- ( c = 5 -> ( c =/= 2 <-> 5 =/= 2 ) ) |
105 |
103 104
|
mpbiri |
|- ( c = 5 -> c =/= 2 ) |
106 |
105
|
adantl |
|- ( ( b = 1 /\ c = 5 ) -> c =/= 2 ) |
107 |
106
|
neneqd |
|- ( ( b = 1 /\ c = 5 ) -> -. c = 2 ) |
108 |
107
|
olcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
109 |
49
|
adantr |
|- ( ( b = 1 /\ c = 5 ) -> b =/= 2 ) |
110 |
109
|
neneqd |
|- ( ( b = 1 /\ c = 5 ) -> -. b = 2 ) |
111 |
110
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
112 |
108 111
|
jca |
|- ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
113 |
110
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
114 |
90
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
115 |
113 114
|
jca |
|- ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
116 |
101 112 115
|
3jca |
|- ( ( b = 1 /\ c = 5 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
117 |
90
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
118 |
65
|
adantr |
|- ( ( b = 1 /\ c = 5 ) -> b =/= 4 ) |
119 |
118
|
neneqd |
|- ( ( b = 1 /\ c = 5 ) -> -. b = 4 ) |
120 |
119
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
121 |
117 120
|
jca |
|- ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
122 |
119
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
123 |
74
|
adantr |
|- ( ( b = 1 /\ c = 5 ) -> b =/= 5 ) |
124 |
123
|
neneqd |
|- ( ( b = 1 /\ c = 5 ) -> -. b = 5 ) |
125 |
124
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
126 |
122 125
|
jca |
|- ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
127 |
87
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
128 |
99
|
olcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
129 |
127 128
|
jca |
|- ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
130 |
121 126 129
|
3jca |
|- ( ( b = 1 /\ c = 5 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
131 |
116 130
|
jca |
|- ( ( b = 1 /\ c = 5 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
132 |
88 91 131
|
jca31 |
|- ( ( b = 1 /\ c = 5 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
133 |
132
|
olcd |
|- ( ( b = 1 /\ c = 5 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
134 |
14 85 133
|
3jaodan |
|- ( ( b = 1 /\ ( c = 1 \/ c = 3 \/ c = 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
135 |
|
neeq1 |
|- ( b = 3 -> ( b =/= 0 <-> 3 =/= 0 ) ) |
136 |
21 135
|
mpbiri |
|- ( b = 3 -> b =/= 0 ) |
137 |
136
|
adantr |
|- ( ( b = 3 /\ c = 1 ) -> b =/= 0 ) |
138 |
137
|
neneqd |
|- ( ( b = 3 /\ c = 1 ) -> -. b = 0 ) |
139 |
138
|
orcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
140 |
|
neeq1 |
|- ( c = 1 -> ( c =/= 0 <-> 1 =/= 0 ) ) |
141 |
15 140
|
mpbiri |
|- ( c = 1 -> c =/= 0 ) |
142 |
141
|
adantl |
|- ( ( b = 3 /\ c = 1 ) -> c =/= 0 ) |
143 |
142
|
neneqd |
|- ( ( b = 3 /\ c = 1 ) -> -. c = 0 ) |
144 |
143
|
olcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
145 |
138
|
orcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
146 |
143
|
olcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
147 |
145 146
|
jca |
|- ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
148 |
58
|
necon2i |
|- ( b = 3 -> b =/= 1 ) |
149 |
148
|
adantr |
|- ( ( b = 3 /\ c = 1 ) -> b =/= 1 ) |
150 |
149
|
neneqd |
|- ( ( b = 3 /\ c = 1 ) -> -. b = 1 ) |
151 |
150
|
orcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
152 |
|
neeq1 |
|- ( b = 3 -> ( b =/= 2 <-> 3 =/= 2 ) ) |
153 |
32 152
|
mpbiri |
|- ( b = 3 -> b =/= 2 ) |
154 |
153
|
adantr |
|- ( ( b = 3 /\ c = 1 ) -> b =/= 2 ) |
155 |
154
|
neneqd |
|- ( ( b = 3 /\ c = 1 ) -> -. b = 2 ) |
156 |
155
|
orcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
157 |
151 156
|
jca |
|- ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
158 |
155
|
orcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
159 |
|
neeq1 |
|- ( c = 1 -> ( c =/= 2 <-> 1 =/= 2 ) ) |
160 |
47 159
|
mpbiri |
|- ( c = 1 -> c =/= 2 ) |
161 |
160
|
adantl |
|- ( ( b = 3 /\ c = 1 ) -> c =/= 2 ) |
162 |
161
|
neneqd |
|- ( ( b = 3 /\ c = 1 ) -> -. c = 2 ) |
163 |
162
|
olcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
164 |
158 163
|
jca |
|- ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
165 |
147 157 164
|
3jca |
|- ( ( b = 3 /\ c = 1 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
166 |
|
neeq1 |
|- ( c = 1 -> ( c =/= 4 <-> 1 =/= 4 ) ) |
167 |
63 166
|
mpbiri |
|- ( c = 1 -> c =/= 4 ) |
168 |
167
|
adantl |
|- ( ( b = 3 /\ c = 1 ) -> c =/= 4 ) |
169 |
168
|
neneqd |
|- ( ( b = 3 /\ c = 1 ) -> -. c = 4 ) |
170 |
169
|
olcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
171 |
42
|
necon2i |
|- ( c = 1 -> c =/= 3 ) |
172 |
171
|
adantl |
|- ( ( b = 3 /\ c = 1 ) -> c =/= 3 ) |
173 |
172
|
neneqd |
|- ( ( b = 3 /\ c = 1 ) -> -. c = 3 ) |
174 |
173
|
olcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
175 |
170 174
|
jca |
|- ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
176 |
|
neeq1 |
|- ( c = 1 -> ( c =/= 5 <-> 1 =/= 5 ) ) |
177 |
72 176
|
mpbiri |
|- ( c = 1 -> c =/= 5 ) |
178 |
177
|
adantl |
|- ( ( b = 3 /\ c = 1 ) -> c =/= 5 ) |
179 |
178
|
neneqd |
|- ( ( b = 3 /\ c = 1 ) -> -. c = 5 ) |
180 |
179
|
olcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
181 |
169
|
olcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
182 |
180 181
|
jca |
|- ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
183 |
138
|
orcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
184 |
143
|
olcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
185 |
183 184
|
jca |
|- ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
186 |
175 182 185
|
3jca |
|- ( ( b = 3 /\ c = 1 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
187 |
165 186
|
jca |
|- ( ( b = 3 /\ c = 1 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
188 |
139 144 187
|
jca31 |
|- ( ( b = 3 /\ c = 1 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
189 |
188
|
olcd |
|- ( ( b = 3 /\ c = 1 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
190 |
|
eqtr3 |
|- ( ( b = 3 /\ c = 3 ) -> b = c ) |
191 |
190
|
orcd |
|- ( ( b = 3 /\ c = 3 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
192 |
136
|
adantr |
|- ( ( b = 3 /\ c = 5 ) -> b =/= 0 ) |
193 |
192
|
neneqd |
|- ( ( b = 3 /\ c = 5 ) -> -. b = 0 ) |
194 |
193
|
orcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
195 |
97
|
adantl |
|- ( ( b = 3 /\ c = 5 ) -> c =/= 0 ) |
196 |
195
|
neneqd |
|- ( ( b = 3 /\ c = 5 ) -> -. c = 0 ) |
197 |
196
|
olcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
198 |
193
|
orcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
199 |
196
|
olcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
200 |
198 199
|
jca |
|- ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
201 |
148
|
adantr |
|- ( ( b = 3 /\ c = 5 ) -> b =/= 1 ) |
202 |
201
|
neneqd |
|- ( ( b = 3 /\ c = 5 ) -> -. b = 1 ) |
203 |
202
|
orcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
204 |
177
|
necon2i |
|- ( c = 5 -> c =/= 1 ) |
205 |
204
|
adantl |
|- ( ( b = 3 /\ c = 5 ) -> c =/= 1 ) |
206 |
205
|
neneqd |
|- ( ( b = 3 /\ c = 5 ) -> -. c = 1 ) |
207 |
206
|
olcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
208 |
203 207
|
jca |
|- ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
209 |
153
|
adantr |
|- ( ( b = 3 /\ c = 5 ) -> b =/= 2 ) |
210 |
209
|
neneqd |
|- ( ( b = 3 /\ c = 5 ) -> -. b = 2 ) |
211 |
210
|
orcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
212 |
105
|
adantl |
|- ( ( b = 3 /\ c = 5 ) -> c =/= 2 ) |
213 |
212
|
neneqd |
|- ( ( b = 3 /\ c = 5 ) -> -. c = 2 ) |
214 |
213
|
olcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
215 |
211 214
|
jca |
|- ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
216 |
200 208 215
|
3jca |
|- ( ( b = 3 /\ c = 5 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
217 |
|
4re |
|- 4 e. RR |
218 |
|
4lt5 |
|- 4 < 5 |
219 |
217 218
|
gtneii |
|- 5 =/= 4 |
220 |
|
neeq1 |
|- ( c = 5 -> ( c =/= 4 <-> 5 =/= 4 ) ) |
221 |
219 220
|
mpbiri |
|- ( c = 5 -> c =/= 4 ) |
222 |
221
|
adantl |
|- ( ( b = 3 /\ c = 5 ) -> c =/= 4 ) |
223 |
222
|
neneqd |
|- ( ( b = 3 /\ c = 5 ) -> -. c = 4 ) |
224 |
223
|
olcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
225 |
|
3re |
|- 3 e. RR |
226 |
|
3lt4 |
|- 3 < 4 |
227 |
225 226
|
ltneii |
|- 3 =/= 4 |
228 |
|
neeq1 |
|- ( b = 3 -> ( b =/= 4 <-> 3 =/= 4 ) ) |
229 |
227 228
|
mpbiri |
|- ( b = 3 -> b =/= 4 ) |
230 |
229
|
adantr |
|- ( ( b = 3 /\ c = 5 ) -> b =/= 4 ) |
231 |
230
|
neneqd |
|- ( ( b = 3 /\ c = 5 ) -> -. b = 4 ) |
232 |
231
|
orcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
233 |
224 232
|
jca |
|- ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
234 |
231
|
orcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
235 |
223
|
olcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
236 |
234 235
|
jca |
|- ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
237 |
193
|
orcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
238 |
196
|
olcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
239 |
237 238
|
jca |
|- ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
240 |
233 236 239
|
3jca |
|- ( ( b = 3 /\ c = 5 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
241 |
216 240
|
jca |
|- ( ( b = 3 /\ c = 5 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
242 |
194 197 241
|
jca31 |
|- ( ( b = 3 /\ c = 5 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
243 |
242
|
olcd |
|- ( ( b = 3 /\ c = 5 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
244 |
189 191 243
|
3jaodan |
|- ( ( b = 3 /\ ( c = 1 \/ c = 3 \/ c = 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
245 |
171
|
adantl |
|- ( ( b = 5 /\ c = 1 ) -> c =/= 3 ) |
246 |
245
|
neneqd |
|- ( ( b = 5 /\ c = 1 ) -> -. c = 3 ) |
247 |
246
|
olcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
248 |
141
|
adantl |
|- ( ( b = 5 /\ c = 1 ) -> c =/= 0 ) |
249 |
248
|
neneqd |
|- ( ( b = 5 /\ c = 1 ) -> -. c = 0 ) |
250 |
249
|
olcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
251 |
|
neeq1 |
|- ( b = 5 -> ( b =/= 0 <-> 5 =/= 0 ) ) |
252 |
95 251
|
mpbiri |
|- ( b = 5 -> b =/= 0 ) |
253 |
252
|
adantr |
|- ( ( b = 5 /\ c = 1 ) -> b =/= 0 ) |
254 |
253
|
neneqd |
|- ( ( b = 5 /\ c = 1 ) -> -. b = 0 ) |
255 |
254
|
orcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
256 |
249
|
olcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
257 |
255 256
|
jca |
|- ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
258 |
74
|
necon2i |
|- ( b = 5 -> b =/= 1 ) |
259 |
258
|
adantr |
|- ( ( b = 5 /\ c = 1 ) -> b =/= 1 ) |
260 |
259
|
neneqd |
|- ( ( b = 5 /\ c = 1 ) -> -. b = 1 ) |
261 |
260
|
orcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
262 |
|
neeq1 |
|- ( b = 5 -> ( b =/= 2 <-> 5 =/= 2 ) ) |
263 |
103 262
|
mpbiri |
|- ( b = 5 -> b =/= 2 ) |
264 |
263
|
adantr |
|- ( ( b = 5 /\ c = 1 ) -> b =/= 2 ) |
265 |
264
|
neneqd |
|- ( ( b = 5 /\ c = 1 ) -> -. b = 2 ) |
266 |
265
|
orcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
267 |
261 266
|
jca |
|- ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
268 |
246
|
olcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
269 |
160
|
adantl |
|- ( ( b = 5 /\ c = 1 ) -> c =/= 2 ) |
270 |
269
|
neneqd |
|- ( ( b = 5 /\ c = 1 ) -> -. c = 2 ) |
271 |
270
|
olcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
272 |
268 271
|
jca |
|- ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
273 |
257 267 272
|
3jca |
|- ( ( b = 5 /\ c = 1 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
274 |
|
3lt5 |
|- 3 < 5 |
275 |
225 274
|
gtneii |
|- 5 =/= 3 |
276 |
|
neeq1 |
|- ( b = 5 -> ( b =/= 3 <-> 5 =/= 3 ) ) |
277 |
275 276
|
mpbiri |
|- ( b = 5 -> b =/= 3 ) |
278 |
277
|
adantr |
|- ( ( b = 5 /\ c = 1 ) -> b =/= 3 ) |
279 |
278
|
neneqd |
|- ( ( b = 5 /\ c = 1 ) -> -. b = 3 ) |
280 |
279
|
orcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
281 |
246
|
olcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
282 |
280 281
|
jca |
|- ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
283 |
177
|
adantl |
|- ( ( b = 5 /\ c = 1 ) -> c =/= 5 ) |
284 |
283
|
neneqd |
|- ( ( b = 5 /\ c = 1 ) -> -. c = 5 ) |
285 |
284
|
olcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
286 |
167
|
adantl |
|- ( ( b = 5 /\ c = 1 ) -> c =/= 4 ) |
287 |
286
|
neneqd |
|- ( ( b = 5 /\ c = 1 ) -> -. c = 4 ) |
288 |
287
|
olcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
289 |
285 288
|
jca |
|- ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
290 |
254
|
orcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
291 |
249
|
olcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
292 |
290 291
|
jca |
|- ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
293 |
282 289 292
|
3jca |
|- ( ( b = 5 /\ c = 1 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
294 |
273 293
|
jca |
|- ( ( b = 5 /\ c = 1 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
295 |
247 250 294
|
jca31 |
|- ( ( b = 5 /\ c = 1 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
296 |
295
|
olcd |
|- ( ( b = 5 /\ c = 1 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
297 |
252
|
adantr |
|- ( ( b = 5 /\ c = 3 ) -> b =/= 0 ) |
298 |
297
|
neneqd |
|- ( ( b = 5 /\ c = 3 ) -> -. b = 0 ) |
299 |
298
|
orcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
300 |
23
|
adantl |
|- ( ( b = 5 /\ c = 3 ) -> c =/= 0 ) |
301 |
300
|
neneqd |
|- ( ( b = 5 /\ c = 3 ) -> -. c = 0 ) |
302 |
301
|
olcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
303 |
298
|
orcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
304 |
301
|
olcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
305 |
303 304
|
jca |
|- ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
306 |
258
|
adantr |
|- ( ( b = 5 /\ c = 3 ) -> b =/= 1 ) |
307 |
306
|
neneqd |
|- ( ( b = 5 /\ c = 3 ) -> -. b = 1 ) |
308 |
307
|
orcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
309 |
42
|
adantl |
|- ( ( b = 5 /\ c = 3 ) -> c =/= 1 ) |
310 |
309
|
neneqd |
|- ( ( b = 5 /\ c = 3 ) -> -. c = 1 ) |
311 |
310
|
olcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
312 |
308 311
|
jca |
|- ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
313 |
263
|
adantr |
|- ( ( b = 5 /\ c = 3 ) -> b =/= 2 ) |
314 |
313
|
neneqd |
|- ( ( b = 5 /\ c = 3 ) -> -. b = 2 ) |
315 |
314
|
orcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
316 |
277
|
adantr |
|- ( ( b = 5 /\ c = 3 ) -> b =/= 3 ) |
317 |
316
|
neneqd |
|- ( ( b = 5 /\ c = 3 ) -> -. b = 3 ) |
318 |
317
|
orcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
319 |
315 318
|
jca |
|- ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
320 |
305 312 319
|
3jca |
|- ( ( b = 5 /\ c = 3 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
321 |
317
|
orcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
322 |
|
neeq1 |
|- ( b = 5 -> ( b =/= 4 <-> 5 =/= 4 ) ) |
323 |
219 322
|
mpbiri |
|- ( b = 5 -> b =/= 4 ) |
324 |
323
|
adantr |
|- ( ( b = 5 /\ c = 3 ) -> b =/= 4 ) |
325 |
324
|
neneqd |
|- ( ( b = 5 /\ c = 3 ) -> -. b = 4 ) |
326 |
325
|
orcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
327 |
321 326
|
jca |
|- ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
328 |
325
|
orcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
329 |
|
neeq1 |
|- ( c = 3 -> ( c =/= 4 <-> 3 =/= 4 ) ) |
330 |
227 329
|
mpbiri |
|- ( c = 3 -> c =/= 4 ) |
331 |
330
|
adantl |
|- ( ( b = 5 /\ c = 3 ) -> c =/= 4 ) |
332 |
331
|
neneqd |
|- ( ( b = 5 /\ c = 3 ) -> -. c = 4 ) |
333 |
332
|
olcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
334 |
328 333
|
jca |
|- ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
335 |
298
|
orcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
336 |
301
|
olcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
337 |
335 336
|
jca |
|- ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
338 |
327 334 337
|
3jca |
|- ( ( b = 5 /\ c = 3 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
339 |
320 338
|
jca |
|- ( ( b = 5 /\ c = 3 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
340 |
299 302 339
|
jca31 |
|- ( ( b = 5 /\ c = 3 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
341 |
340
|
olcd |
|- ( ( b = 5 /\ c = 3 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
342 |
|
eqtr3 |
|- ( ( b = 5 /\ c = 5 ) -> b = c ) |
343 |
342
|
orcd |
|- ( ( b = 5 /\ c = 5 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
344 |
296 341 343
|
3jaodan |
|- ( ( b = 5 /\ ( c = 1 \/ c = 3 \/ c = 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
345 |
134 244 344
|
3jaoian |
|- ( ( ( b = 1 \/ b = 3 \/ b = 5 ) /\ ( c = 1 \/ c = 3 \/ c = 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
346 |
8 12 345
|
syl2anb |
|- ( ( b e. ( G NeighbVtx 0 ) /\ c e. ( G NeighbVtx 0 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
347 |
346
|
rgen2 |
|- A. b e. ( G NeighbVtx 0 ) A. c e. ( G NeighbVtx 0 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
348 |
1 2 3
|
usgrexmpl2nb1 |
|- ( G NeighbVtx 1 ) = { 0 , 2 } |
349 |
348
|
eleq2i |
|- ( b e. ( G NeighbVtx 1 ) <-> b e. { 0 , 2 } ) |
350 |
6
|
elpr |
|- ( b e. { 0 , 2 } <-> ( b = 0 \/ b = 2 ) ) |
351 |
349 350
|
bitri |
|- ( b e. ( G NeighbVtx 1 ) <-> ( b = 0 \/ b = 2 ) ) |
352 |
348
|
eleq2i |
|- ( c e. ( G NeighbVtx 1 ) <-> c e. { 0 , 2 } ) |
353 |
10
|
elpr |
|- ( c e. { 0 , 2 } <-> ( c = 0 \/ c = 2 ) ) |
354 |
352 353
|
bitri |
|- ( c e. ( G NeighbVtx 1 ) <-> ( c = 0 \/ c = 2 ) ) |
355 |
|
eqtr3 |
|- ( ( b = 0 /\ c = 0 ) -> b = c ) |
356 |
355
|
orcd |
|- ( ( b = 0 /\ c = 0 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
357 |
|
2ne0 |
|- 2 =/= 0 |
358 |
|
neeq1 |
|- ( b = 2 -> ( b =/= 0 <-> 2 =/= 0 ) ) |
359 |
357 358
|
mpbiri |
|- ( b = 2 -> b =/= 0 ) |
360 |
359
|
adantr |
|- ( ( b = 2 /\ c = 0 ) -> b =/= 0 ) |
361 |
360
|
neneqd |
|- ( ( b = 2 /\ c = 0 ) -> -. b = 0 ) |
362 |
361
|
orcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
363 |
153
|
necon2i |
|- ( b = 2 -> b =/= 3 ) |
364 |
363
|
adantr |
|- ( ( b = 2 /\ c = 0 ) -> b =/= 3 ) |
365 |
364
|
neneqd |
|- ( ( b = 2 /\ c = 0 ) -> -. b = 3 ) |
366 |
365
|
orcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
367 |
361
|
orcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
368 |
49
|
necon2i |
|- ( b = 2 -> b =/= 1 ) |
369 |
368
|
adantr |
|- ( ( b = 2 /\ c = 0 ) -> b =/= 1 ) |
370 |
369
|
neneqd |
|- ( ( b = 2 /\ c = 0 ) -> -. b = 1 ) |
371 |
370
|
orcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
372 |
367 371
|
jca |
|- ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
373 |
370
|
orcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
374 |
141
|
necon2i |
|- ( c = 0 -> c =/= 1 ) |
375 |
374
|
adantl |
|- ( ( b = 2 /\ c = 0 ) -> c =/= 1 ) |
376 |
375
|
neneqd |
|- ( ( b = 2 /\ c = 0 ) -> -. c = 1 ) |
377 |
376
|
olcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
378 |
373 377
|
jca |
|- ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
379 |
23
|
necon2i |
|- ( c = 0 -> c =/= 3 ) |
380 |
379
|
adantl |
|- ( ( b = 2 /\ c = 0 ) -> c =/= 3 ) |
381 |
380
|
neneqd |
|- ( ( b = 2 /\ c = 0 ) -> -. c = 3 ) |
382 |
381
|
olcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
383 |
365
|
orcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
384 |
382 383
|
jca |
|- ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
385 |
372 378 384
|
3jca |
|- ( ( b = 2 /\ c = 0 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
386 |
365
|
orcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
387 |
381
|
olcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
388 |
386 387
|
jca |
|- ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
389 |
97
|
necon2i |
|- ( c = 0 -> c =/= 5 ) |
390 |
389
|
adantl |
|- ( ( b = 2 /\ c = 0 ) -> c =/= 5 ) |
391 |
390
|
neneqd |
|- ( ( b = 2 /\ c = 0 ) -> -. c = 5 ) |
392 |
391
|
olcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
393 |
|
4pos |
|- 0 < 4 |
394 |
93 393
|
ltneii |
|- 0 =/= 4 |
395 |
|
neeq1 |
|- ( c = 0 -> ( c =/= 4 <-> 0 =/= 4 ) ) |
396 |
394 395
|
mpbiri |
|- ( c = 0 -> c =/= 4 ) |
397 |
396
|
adantl |
|- ( ( b = 2 /\ c = 0 ) -> c =/= 4 ) |
398 |
397
|
neneqd |
|- ( ( b = 2 /\ c = 0 ) -> -. c = 4 ) |
399 |
398
|
olcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
400 |
392 399
|
jca |
|- ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
401 |
361
|
orcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
402 |
263
|
necon2i |
|- ( b = 2 -> b =/= 5 ) |
403 |
402
|
adantr |
|- ( ( b = 2 /\ c = 0 ) -> b =/= 5 ) |
404 |
403
|
neneqd |
|- ( ( b = 2 /\ c = 0 ) -> -. b = 5 ) |
405 |
404
|
orcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
406 |
401 405
|
jca |
|- ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
407 |
388 400 406
|
3jca |
|- ( ( b = 2 /\ c = 0 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
408 |
385 407
|
jca |
|- ( ( b = 2 /\ c = 0 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
409 |
362 366 408
|
jca31 |
|- ( ( b = 2 /\ c = 0 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
410 |
409
|
olcd |
|- ( ( b = 2 /\ c = 0 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
411 |
34
|
necon2i |
|- ( c = 2 -> c =/= 3 ) |
412 |
411
|
adantl |
|- ( ( b = 0 /\ c = 2 ) -> c =/= 3 ) |
413 |
412
|
neneqd |
|- ( ( b = 0 /\ c = 2 ) -> -. c = 3 ) |
414 |
413
|
olcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
415 |
|
neeq1 |
|- ( c = 2 -> ( c =/= 0 <-> 2 =/= 0 ) ) |
416 |
357 415
|
mpbiri |
|- ( c = 2 -> c =/= 0 ) |
417 |
416
|
adantl |
|- ( ( b = 0 /\ c = 2 ) -> c =/= 0 ) |
418 |
417
|
neneqd |
|- ( ( b = 0 /\ c = 2 ) -> -. c = 0 ) |
419 |
418
|
olcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
420 |
160
|
necon2i |
|- ( c = 2 -> c =/= 1 ) |
421 |
420
|
adantl |
|- ( ( b = 0 /\ c = 2 ) -> c =/= 1 ) |
422 |
421
|
neneqd |
|- ( ( b = 0 /\ c = 2 ) -> -. c = 1 ) |
423 |
422
|
olcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
424 |
418
|
olcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
425 |
423 424
|
jca |
|- ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
426 |
17
|
necon2i |
|- ( b = 0 -> b =/= 1 ) |
427 |
426
|
adantr |
|- ( ( b = 0 /\ c = 2 ) -> b =/= 1 ) |
428 |
427
|
neneqd |
|- ( ( b = 0 /\ c = 2 ) -> -. b = 1 ) |
429 |
428
|
orcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
430 |
359
|
necon2i |
|- ( b = 0 -> b =/= 2 ) |
431 |
430
|
adantr |
|- ( ( b = 0 /\ c = 2 ) -> b =/= 2 ) |
432 |
431
|
neneqd |
|- ( ( b = 0 /\ c = 2 ) -> -. b = 2 ) |
433 |
432
|
orcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
434 |
429 433
|
jca |
|- ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
435 |
413
|
olcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
436 |
136
|
necon2i |
|- ( b = 0 -> b =/= 3 ) |
437 |
436
|
adantr |
|- ( ( b = 0 /\ c = 2 ) -> b =/= 3 ) |
438 |
437
|
neneqd |
|- ( ( b = 0 /\ c = 2 ) -> -. b = 3 ) |
439 |
438
|
orcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
440 |
435 439
|
jca |
|- ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
441 |
425 434 440
|
3jca |
|- ( ( b = 0 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
442 |
438
|
orcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
443 |
413
|
olcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
444 |
442 443
|
jca |
|- ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
445 |
|
neeq1 |
|- ( b = 0 -> ( b =/= 4 <-> 0 =/= 4 ) ) |
446 |
394 445
|
mpbiri |
|- ( b = 0 -> b =/= 4 ) |
447 |
446
|
adantr |
|- ( ( b = 0 /\ c = 2 ) -> b =/= 4 ) |
448 |
447
|
neneqd |
|- ( ( b = 0 /\ c = 2 ) -> -. b = 4 ) |
449 |
448
|
orcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
450 |
252
|
necon2i |
|- ( b = 0 -> b =/= 5 ) |
451 |
450
|
adantr |
|- ( ( b = 0 /\ c = 2 ) -> b =/= 5 ) |
452 |
451
|
neneqd |
|- ( ( b = 0 /\ c = 2 ) -> -. b = 5 ) |
453 |
452
|
orcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
454 |
449 453
|
jca |
|- ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
455 |
105
|
necon2i |
|- ( c = 2 -> c =/= 5 ) |
456 |
455
|
adantl |
|- ( ( b = 0 /\ c = 2 ) -> c =/= 5 ) |
457 |
456
|
neneqd |
|- ( ( b = 0 /\ c = 2 ) -> -. c = 5 ) |
458 |
457
|
olcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
459 |
418
|
olcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
460 |
458 459
|
jca |
|- ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
461 |
444 454 460
|
3jca |
|- ( ( b = 0 /\ c = 2 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
462 |
441 461
|
jca |
|- ( ( b = 0 /\ c = 2 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
463 |
414 419 462
|
jca31 |
|- ( ( b = 0 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
464 |
463
|
olcd |
|- ( ( b = 0 /\ c = 2 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
465 |
359
|
adantr |
|- ( ( b = 2 /\ c = 2 ) -> b =/= 0 ) |
466 |
465
|
neneqd |
|- ( ( b = 2 /\ c = 2 ) -> -. b = 0 ) |
467 |
466
|
orcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
468 |
416
|
adantl |
|- ( ( b = 2 /\ c = 2 ) -> c =/= 0 ) |
469 |
468
|
neneqd |
|- ( ( b = 2 /\ c = 2 ) -> -. c = 0 ) |
470 |
469
|
olcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
471 |
466
|
orcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
472 |
469
|
olcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
473 |
471 472
|
jca |
|- ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
474 |
368
|
adantr |
|- ( ( b = 2 /\ c = 2 ) -> b =/= 1 ) |
475 |
474
|
neneqd |
|- ( ( b = 2 /\ c = 2 ) -> -. b = 1 ) |
476 |
475
|
orcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
477 |
420
|
adantl |
|- ( ( b = 2 /\ c = 2 ) -> c =/= 1 ) |
478 |
477
|
neneqd |
|- ( ( b = 2 /\ c = 2 ) -> -. c = 1 ) |
479 |
478
|
olcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
480 |
476 479
|
jca |
|- ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
481 |
411
|
adantl |
|- ( ( b = 2 /\ c = 2 ) -> c =/= 3 ) |
482 |
481
|
neneqd |
|- ( ( b = 2 /\ c = 2 ) -> -. c = 3 ) |
483 |
482
|
olcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
484 |
363
|
adantr |
|- ( ( b = 2 /\ c = 2 ) -> b =/= 3 ) |
485 |
484
|
neneqd |
|- ( ( b = 2 /\ c = 2 ) -> -. b = 3 ) |
486 |
485
|
orcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
487 |
483 486
|
jca |
|- ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
488 |
473 480 487
|
3jca |
|- ( ( b = 2 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
489 |
485
|
orcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
490 |
|
2lt4 |
|- 2 < 4 |
491 |
30 490
|
ltneii |
|- 2 =/= 4 |
492 |
|
neeq1 |
|- ( b = 2 -> ( b =/= 4 <-> 2 =/= 4 ) ) |
493 |
491 492
|
mpbiri |
|- ( b = 2 -> b =/= 4 ) |
494 |
493
|
adantr |
|- ( ( b = 2 /\ c = 2 ) -> b =/= 4 ) |
495 |
494
|
neneqd |
|- ( ( b = 2 /\ c = 2 ) -> -. b = 4 ) |
496 |
495
|
orcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
497 |
489 496
|
jca |
|- ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
498 |
495
|
orcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
499 |
402
|
adantr |
|- ( ( b = 2 /\ c = 2 ) -> b =/= 5 ) |
500 |
499
|
neneqd |
|- ( ( b = 2 /\ c = 2 ) -> -. b = 5 ) |
501 |
500
|
orcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
502 |
498 501
|
jca |
|- ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
503 |
466
|
orcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
504 |
469
|
olcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
505 |
503 504
|
jca |
|- ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
506 |
497 502 505
|
3jca |
|- ( ( b = 2 /\ c = 2 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
507 |
488 506
|
jca |
|- ( ( b = 2 /\ c = 2 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
508 |
467 470 507
|
jca31 |
|- ( ( b = 2 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
509 |
508
|
olcd |
|- ( ( b = 2 /\ c = 2 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
510 |
356 410 464 509
|
ccase |
|- ( ( ( b = 0 \/ b = 2 ) /\ ( c = 0 \/ c = 2 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
511 |
351 354 510
|
syl2anb |
|- ( ( b e. ( G NeighbVtx 1 ) /\ c e. ( G NeighbVtx 1 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
512 |
511
|
rgen2 |
|- A. b e. ( G NeighbVtx 1 ) A. c e. ( G NeighbVtx 1 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
513 |
1 2 3
|
usgrexmpl2nb2 |
|- ( G NeighbVtx 2 ) = { 1 , 3 } |
514 |
513
|
eleq2i |
|- ( b e. ( G NeighbVtx 2 ) <-> b e. { 1 , 3 } ) |
515 |
6
|
elpr |
|- ( b e. { 1 , 3 } <-> ( b = 1 \/ b = 3 ) ) |
516 |
514 515
|
bitri |
|- ( b e. ( G NeighbVtx 2 ) <-> ( b = 1 \/ b = 3 ) ) |
517 |
513
|
eleq2i |
|- ( c e. ( G NeighbVtx 2 ) <-> c e. { 1 , 3 } ) |
518 |
10
|
elpr |
|- ( c e. { 1 , 3 } <-> ( c = 1 \/ c = 3 ) ) |
519 |
517 518
|
bitri |
|- ( c e. ( G NeighbVtx 2 ) <-> ( c = 1 \/ c = 3 ) ) |
520 |
14 189 85 191
|
ccase |
|- ( ( ( b = 1 \/ b = 3 ) /\ ( c = 1 \/ c = 3 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
521 |
516 519 520
|
syl2anb |
|- ( ( b e. ( G NeighbVtx 2 ) /\ c e. ( G NeighbVtx 2 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
522 |
521
|
rgen2 |
|- A. b e. ( G NeighbVtx 2 ) A. c e. ( G NeighbVtx 2 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
523 |
|
c0ex |
|- 0 e. _V |
524 |
|
1ex |
|- 1 e. _V |
525 |
|
2ex |
|- 2 e. _V |
526 |
|
oveq2 |
|- ( a = 0 -> ( G NeighbVtx a ) = ( G NeighbVtx 0 ) ) |
527 |
526
|
raleqdv |
|- ( a = 0 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 0 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
528 |
526 527
|
raleqbidv |
|- ( a = 0 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 0 ) A. c e. ( G NeighbVtx 0 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
529 |
|
oveq2 |
|- ( a = 1 -> ( G NeighbVtx a ) = ( G NeighbVtx 1 ) ) |
530 |
529
|
raleqdv |
|- ( a = 1 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 1 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
531 |
529 530
|
raleqbidv |
|- ( a = 1 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 1 ) A. c e. ( G NeighbVtx 1 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
532 |
|
oveq2 |
|- ( a = 2 -> ( G NeighbVtx a ) = ( G NeighbVtx 2 ) ) |
533 |
532
|
raleqdv |
|- ( a = 2 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 2 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
534 |
532 533
|
raleqbidv |
|- ( a = 2 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 2 ) A. c e. ( G NeighbVtx 2 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
535 |
523 524 525 528 531 534
|
raltp |
|- ( A. a e. { 0 , 1 , 2 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> ( A. b e. ( G NeighbVtx 0 ) A. c e. ( G NeighbVtx 0 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) /\ A. b e. ( G NeighbVtx 1 ) A. c e. ( G NeighbVtx 1 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) /\ A. b e. ( G NeighbVtx 2 ) A. c e. ( G NeighbVtx 2 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
536 |
347 512 522 535
|
mpbir3an |
|- A. a e. { 0 , 1 , 2 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
537 |
1 2 3
|
usgrexmpl2nb3 |
|- ( G NeighbVtx 3 ) = { 0 , 2 , 4 } |
538 |
537
|
eleq2i |
|- ( b e. ( G NeighbVtx 3 ) <-> b e. { 0 , 2 , 4 } ) |
539 |
6
|
eltp |
|- ( b e. { 0 , 2 , 4 } <-> ( b = 0 \/ b = 2 \/ b = 4 ) ) |
540 |
538 539
|
bitri |
|- ( b e. ( G NeighbVtx 3 ) <-> ( b = 0 \/ b = 2 \/ b = 4 ) ) |
541 |
537
|
eleq2i |
|- ( c e. ( G NeighbVtx 3 ) <-> c e. { 0 , 2 , 4 } ) |
542 |
10
|
eltp |
|- ( c e. { 0 , 2 , 4 } <-> ( c = 0 \/ c = 2 \/ c = 4 ) ) |
543 |
541 542
|
bitri |
|- ( c e. ( G NeighbVtx 3 ) <-> ( c = 0 \/ c = 2 \/ c = 4 ) ) |
544 |
330
|
necon2i |
|- ( c = 4 -> c =/= 3 ) |
545 |
544
|
adantl |
|- ( ( b = 0 /\ c = 4 ) -> c =/= 3 ) |
546 |
545
|
neneqd |
|- ( ( b = 0 /\ c = 4 ) -> -. c = 3 ) |
547 |
546
|
olcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
548 |
436
|
adantr |
|- ( ( b = 0 /\ c = 4 ) -> b =/= 3 ) |
549 |
548
|
neneqd |
|- ( ( b = 0 /\ c = 4 ) -> -. b = 3 ) |
550 |
549
|
orcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
551 |
167
|
necon2i |
|- ( c = 4 -> c =/= 1 ) |
552 |
551
|
adantl |
|- ( ( b = 0 /\ c = 4 ) -> c =/= 1 ) |
553 |
552
|
neneqd |
|- ( ( b = 0 /\ c = 4 ) -> -. c = 1 ) |
554 |
553
|
olcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
555 |
426
|
adantr |
|- ( ( b = 0 /\ c = 4 ) -> b =/= 1 ) |
556 |
555
|
neneqd |
|- ( ( b = 0 /\ c = 4 ) -> -. b = 1 ) |
557 |
556
|
orcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
558 |
554 557
|
jca |
|- ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
559 |
556
|
orcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
560 |
430
|
adantr |
|- ( ( b = 0 /\ c = 4 ) -> b =/= 2 ) |
561 |
560
|
neneqd |
|- ( ( b = 0 /\ c = 4 ) -> -. b = 2 ) |
562 |
561
|
orcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
563 |
559 562
|
jca |
|- ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
564 |
546
|
olcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
565 |
549
|
orcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
566 |
564 565
|
jca |
|- ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
567 |
558 563 566
|
3jca |
|- ( ( b = 0 /\ c = 4 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
568 |
549
|
orcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
569 |
546
|
olcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
570 |
568 569
|
jca |
|- ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
571 |
446
|
adantr |
|- ( ( b = 0 /\ c = 4 ) -> b =/= 4 ) |
572 |
571
|
neneqd |
|- ( ( b = 0 /\ c = 4 ) -> -. b = 4 ) |
573 |
572
|
orcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
574 |
450
|
adantr |
|- ( ( b = 0 /\ c = 4 ) -> b =/= 5 ) |
575 |
574
|
neneqd |
|- ( ( b = 0 /\ c = 4 ) -> -. b = 5 ) |
576 |
575
|
orcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
577 |
573 576
|
jca |
|- ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
578 |
221
|
necon2i |
|- ( c = 4 -> c =/= 5 ) |
579 |
578
|
adantl |
|- ( ( b = 0 /\ c = 4 ) -> c =/= 5 ) |
580 |
579
|
neneqd |
|- ( ( b = 0 /\ c = 4 ) -> -. c = 5 ) |
581 |
580
|
olcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
582 |
396
|
necon2i |
|- ( c = 4 -> c =/= 0 ) |
583 |
582
|
adantl |
|- ( ( b = 0 /\ c = 4 ) -> c =/= 0 ) |
584 |
583
|
neneqd |
|- ( ( b = 0 /\ c = 4 ) -> -. c = 0 ) |
585 |
584
|
olcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
586 |
581 585
|
jca |
|- ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
587 |
570 577 586
|
3jca |
|- ( ( b = 0 /\ c = 4 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
588 |
567 587
|
jca |
|- ( ( b = 0 /\ c = 4 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
589 |
547 550 588
|
jca31 |
|- ( ( b = 0 /\ c = 4 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
590 |
589
|
olcd |
|- ( ( b = 0 /\ c = 4 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
591 |
356 464 590
|
3jaodan |
|- ( ( b = 0 /\ ( c = 0 \/ c = 2 \/ c = 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
592 |
359
|
adantr |
|- ( ( b = 2 /\ c = 4 ) -> b =/= 0 ) |
593 |
592
|
neneqd |
|- ( ( b = 2 /\ c = 4 ) -> -. b = 0 ) |
594 |
593
|
orcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
595 |
582
|
adantl |
|- ( ( b = 2 /\ c = 4 ) -> c =/= 0 ) |
596 |
595
|
neneqd |
|- ( ( b = 2 /\ c = 4 ) -> -. c = 0 ) |
597 |
596
|
olcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
598 |
593
|
orcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
599 |
596
|
olcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
600 |
598 599
|
jca |
|- ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
601 |
368
|
adantr |
|- ( ( b = 2 /\ c = 4 ) -> b =/= 1 ) |
602 |
601
|
neneqd |
|- ( ( b = 2 /\ c = 4 ) -> -. b = 1 ) |
603 |
602
|
orcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
604 |
551
|
adantl |
|- ( ( b = 2 /\ c = 4 ) -> c =/= 1 ) |
605 |
604
|
neneqd |
|- ( ( b = 2 /\ c = 4 ) -> -. c = 1 ) |
606 |
605
|
olcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
607 |
603 606
|
jca |
|- ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
608 |
544
|
adantl |
|- ( ( b = 2 /\ c = 4 ) -> c =/= 3 ) |
609 |
608
|
neneqd |
|- ( ( b = 2 /\ c = 4 ) -> -. c = 3 ) |
610 |
609
|
olcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
611 |
363
|
adantr |
|- ( ( b = 2 /\ c = 4 ) -> b =/= 3 ) |
612 |
611
|
neneqd |
|- ( ( b = 2 /\ c = 4 ) -> -. b = 3 ) |
613 |
612
|
orcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
614 |
610 613
|
jca |
|- ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
615 |
600 607 614
|
3jca |
|- ( ( b = 2 /\ c = 4 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
616 |
612
|
orcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
617 |
609
|
olcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
618 |
616 617
|
jca |
|- ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
619 |
493
|
adantr |
|- ( ( b = 2 /\ c = 4 ) -> b =/= 4 ) |
620 |
619
|
neneqd |
|- ( ( b = 2 /\ c = 4 ) -> -. b = 4 ) |
621 |
620
|
orcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
622 |
402
|
adantr |
|- ( ( b = 2 /\ c = 4 ) -> b =/= 5 ) |
623 |
622
|
neneqd |
|- ( ( b = 2 /\ c = 4 ) -> -. b = 5 ) |
624 |
623
|
orcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
625 |
621 624
|
jca |
|- ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
626 |
593
|
orcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
627 |
596
|
olcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
628 |
626 627
|
jca |
|- ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
629 |
618 625 628
|
3jca |
|- ( ( b = 2 /\ c = 4 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
630 |
615 629
|
jca |
|- ( ( b = 2 /\ c = 4 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
631 |
594 597 630
|
jca31 |
|- ( ( b = 2 /\ c = 4 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
632 |
631
|
olcd |
|- ( ( b = 2 /\ c = 4 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
633 |
410 509 632
|
3jaodan |
|- ( ( b = 2 /\ ( c = 0 \/ c = 2 \/ c = 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
634 |
446
|
necon2i |
|- ( b = 4 -> b =/= 0 ) |
635 |
634
|
adantr |
|- ( ( b = 4 /\ c = 0 ) -> b =/= 0 ) |
636 |
635
|
neneqd |
|- ( ( b = 4 /\ c = 0 ) -> -. b = 0 ) |
637 |
636
|
orcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
638 |
229
|
necon2i |
|- ( b = 4 -> b =/= 3 ) |
639 |
638
|
adantr |
|- ( ( b = 4 /\ c = 0 ) -> b =/= 3 ) |
640 |
639
|
neneqd |
|- ( ( b = 4 /\ c = 0 ) -> -. b = 3 ) |
641 |
640
|
orcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
642 |
636
|
orcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
643 |
65
|
necon2i |
|- ( b = 4 -> b =/= 1 ) |
644 |
643
|
adantr |
|- ( ( b = 4 /\ c = 0 ) -> b =/= 1 ) |
645 |
644
|
neneqd |
|- ( ( b = 4 /\ c = 0 ) -> -. b = 1 ) |
646 |
645
|
orcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
647 |
642 646
|
jca |
|- ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
648 |
416
|
necon2i |
|- ( c = 0 -> c =/= 2 ) |
649 |
648
|
adantl |
|- ( ( b = 4 /\ c = 0 ) -> c =/= 2 ) |
650 |
649
|
neneqd |
|- ( ( b = 4 /\ c = 0 ) -> -. c = 2 ) |
651 |
650
|
olcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
652 |
374
|
adantl |
|- ( ( b = 4 /\ c = 0 ) -> c =/= 1 ) |
653 |
652
|
neneqd |
|- ( ( b = 4 /\ c = 0 ) -> -. c = 1 ) |
654 |
653
|
olcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
655 |
651 654
|
jca |
|- ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
656 |
379
|
adantl |
|- ( ( b = 4 /\ c = 0 ) -> c =/= 3 ) |
657 |
656
|
neneqd |
|- ( ( b = 4 /\ c = 0 ) -> -. c = 3 ) |
658 |
657
|
olcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
659 |
640
|
orcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
660 |
658 659
|
jca |
|- ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
661 |
647 655 660
|
3jca |
|- ( ( b = 4 /\ c = 0 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
662 |
640
|
orcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
663 |
657
|
olcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
664 |
662 663
|
jca |
|- ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
665 |
389
|
adantl |
|- ( ( b = 4 /\ c = 0 ) -> c =/= 5 ) |
666 |
665
|
neneqd |
|- ( ( b = 4 /\ c = 0 ) -> -. c = 5 ) |
667 |
666
|
olcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
668 |
396
|
adantl |
|- ( ( b = 4 /\ c = 0 ) -> c =/= 4 ) |
669 |
668
|
neneqd |
|- ( ( b = 4 /\ c = 0 ) -> -. c = 4 ) |
670 |
669
|
olcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
671 |
667 670
|
jca |
|- ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
672 |
636
|
orcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
673 |
323
|
necon2i |
|- ( b = 4 -> b =/= 5 ) |
674 |
673
|
adantr |
|- ( ( b = 4 /\ c = 0 ) -> b =/= 5 ) |
675 |
674
|
neneqd |
|- ( ( b = 4 /\ c = 0 ) -> -. b = 5 ) |
676 |
675
|
orcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
677 |
672 676
|
jca |
|- ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
678 |
664 671 677
|
3jca |
|- ( ( b = 4 /\ c = 0 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
679 |
661 678
|
jca |
|- ( ( b = 4 /\ c = 0 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
680 |
637 641 679
|
jca31 |
|- ( ( b = 4 /\ c = 0 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
681 |
680
|
olcd |
|- ( ( b = 4 /\ c = 0 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
682 |
634
|
adantr |
|- ( ( b = 4 /\ c = 2 ) -> b =/= 0 ) |
683 |
682
|
neneqd |
|- ( ( b = 4 /\ c = 2 ) -> -. b = 0 ) |
684 |
683
|
orcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
685 |
416
|
adantl |
|- ( ( b = 4 /\ c = 2 ) -> c =/= 0 ) |
686 |
685
|
neneqd |
|- ( ( b = 4 /\ c = 2 ) -> -. c = 0 ) |
687 |
686
|
olcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
688 |
683
|
orcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
689 |
686
|
olcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
690 |
688 689
|
jca |
|- ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
691 |
643
|
adantr |
|- ( ( b = 4 /\ c = 2 ) -> b =/= 1 ) |
692 |
691
|
neneqd |
|- ( ( b = 4 /\ c = 2 ) -> -. b = 1 ) |
693 |
692
|
orcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
694 |
420
|
adantl |
|- ( ( b = 4 /\ c = 2 ) -> c =/= 1 ) |
695 |
694
|
neneqd |
|- ( ( b = 4 /\ c = 2 ) -> -. c = 1 ) |
696 |
695
|
olcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
697 |
693 696
|
jca |
|- ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
698 |
493
|
necon2i |
|- ( b = 4 -> b =/= 2 ) |
699 |
698
|
adantr |
|- ( ( b = 4 /\ c = 2 ) -> b =/= 2 ) |
700 |
699
|
neneqd |
|- ( ( b = 4 /\ c = 2 ) -> -. b = 2 ) |
701 |
700
|
orcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
702 |
638
|
adantr |
|- ( ( b = 4 /\ c = 2 ) -> b =/= 3 ) |
703 |
702
|
neneqd |
|- ( ( b = 4 /\ c = 2 ) -> -. b = 3 ) |
704 |
703
|
orcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
705 |
701 704
|
jca |
|- ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
706 |
690 697 705
|
3jca |
|- ( ( b = 4 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
707 |
703
|
orcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
708 |
411
|
adantl |
|- ( ( b = 4 /\ c = 2 ) -> c =/= 3 ) |
709 |
708
|
neneqd |
|- ( ( b = 4 /\ c = 2 ) -> -. c = 3 ) |
710 |
709
|
olcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
711 |
707 710
|
jca |
|- ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
712 |
455
|
adantl |
|- ( ( b = 4 /\ c = 2 ) -> c =/= 5 ) |
713 |
712
|
neneqd |
|- ( ( b = 4 /\ c = 2 ) -> -. c = 5 ) |
714 |
713
|
olcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
715 |
|
neeq1 |
|- ( c = 2 -> ( c =/= 4 <-> 2 =/= 4 ) ) |
716 |
491 715
|
mpbiri |
|- ( c = 2 -> c =/= 4 ) |
717 |
716
|
adantl |
|- ( ( b = 4 /\ c = 2 ) -> c =/= 4 ) |
718 |
717
|
neneqd |
|- ( ( b = 4 /\ c = 2 ) -> -. c = 4 ) |
719 |
718
|
olcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
720 |
714 719
|
jca |
|- ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
721 |
683
|
orcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
722 |
686
|
olcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
723 |
721 722
|
jca |
|- ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
724 |
711 720 723
|
3jca |
|- ( ( b = 4 /\ c = 2 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
725 |
706 724
|
jca |
|- ( ( b = 4 /\ c = 2 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
726 |
684 687 725
|
jca31 |
|- ( ( b = 4 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
727 |
726
|
olcd |
|- ( ( b = 4 /\ c = 2 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
728 |
|
eqtr3 |
|- ( ( b = 4 /\ c = 4 ) -> b = c ) |
729 |
728
|
orcd |
|- ( ( b = 4 /\ c = 4 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
730 |
681 727 729
|
3jaodan |
|- ( ( b = 4 /\ ( c = 0 \/ c = 2 \/ c = 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
731 |
591 633 730
|
3jaoian |
|- ( ( ( b = 0 \/ b = 2 \/ b = 4 ) /\ ( c = 0 \/ c = 2 \/ c = 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
732 |
540 543 731
|
syl2anb |
|- ( ( b e. ( G NeighbVtx 3 ) /\ c e. ( G NeighbVtx 3 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
733 |
732
|
rgen2 |
|- A. b e. ( G NeighbVtx 3 ) A. c e. ( G NeighbVtx 3 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
734 |
1 2 3
|
usgrexmpl2nb4 |
|- ( G NeighbVtx 4 ) = { 3 , 5 } |
735 |
734
|
eleq2i |
|- ( b e. ( G NeighbVtx 4 ) <-> b e. { 3 , 5 } ) |
736 |
6
|
elpr |
|- ( b e. { 3 , 5 } <-> ( b = 3 \/ b = 5 ) ) |
737 |
735 736
|
bitri |
|- ( b e. ( G NeighbVtx 4 ) <-> ( b = 3 \/ b = 5 ) ) |
738 |
734
|
eleq2i |
|- ( c e. ( G NeighbVtx 4 ) <-> c e. { 3 , 5 } ) |
739 |
10
|
elpr |
|- ( c e. { 3 , 5 } <-> ( c = 3 \/ c = 5 ) ) |
740 |
738 739
|
bitri |
|- ( c e. ( G NeighbVtx 4 ) <-> ( c = 3 \/ c = 5 ) ) |
741 |
191 341 243 343
|
ccase |
|- ( ( ( b = 3 \/ b = 5 ) /\ ( c = 3 \/ c = 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
742 |
737 740 741
|
syl2anb |
|- ( ( b e. ( G NeighbVtx 4 ) /\ c e. ( G NeighbVtx 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
743 |
742
|
rgen2 |
|- A. b e. ( G NeighbVtx 4 ) A. c e. ( G NeighbVtx 4 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
744 |
1 2 3
|
usgrexmpl2nb5 |
|- ( G NeighbVtx 5 ) = { 0 , 4 } |
745 |
744
|
eleq2i |
|- ( b e. ( G NeighbVtx 5 ) <-> b e. { 0 , 4 } ) |
746 |
6
|
elpr |
|- ( b e. { 0 , 4 } <-> ( b = 0 \/ b = 4 ) ) |
747 |
745 746
|
bitri |
|- ( b e. ( G NeighbVtx 5 ) <-> ( b = 0 \/ b = 4 ) ) |
748 |
744
|
eleq2i |
|- ( c e. ( G NeighbVtx 5 ) <-> c e. { 0 , 4 } ) |
749 |
10
|
elpr |
|- ( c e. { 0 , 4 } <-> ( c = 0 \/ c = 4 ) ) |
750 |
748 749
|
bitri |
|- ( c e. ( G NeighbVtx 5 ) <-> ( c = 0 \/ c = 4 ) ) |
751 |
356 681 590 729
|
ccase |
|- ( ( ( b = 0 \/ b = 4 ) /\ ( c = 0 \/ c = 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
752 |
747 750 751
|
syl2anb |
|- ( ( b e. ( G NeighbVtx 5 ) /\ c e. ( G NeighbVtx 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
753 |
752
|
rgen2 |
|- A. b e. ( G NeighbVtx 5 ) A. c e. ( G NeighbVtx 5 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
754 |
|
3ex |
|- 3 e. _V |
755 |
|
4nn0 |
|- 4 e. NN0 |
756 |
755
|
elexi |
|- 4 e. _V |
757 |
|
5nn0 |
|- 5 e. NN0 |
758 |
757
|
elexi |
|- 5 e. _V |
759 |
|
oveq2 |
|- ( a = 3 -> ( G NeighbVtx a ) = ( G NeighbVtx 3 ) ) |
760 |
759
|
raleqdv |
|- ( a = 3 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 3 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
761 |
759 760
|
raleqbidv |
|- ( a = 3 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 3 ) A. c e. ( G NeighbVtx 3 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
762 |
|
oveq2 |
|- ( a = 4 -> ( G NeighbVtx a ) = ( G NeighbVtx 4 ) ) |
763 |
762
|
raleqdv |
|- ( a = 4 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 4 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
764 |
762 763
|
raleqbidv |
|- ( a = 4 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 4 ) A. c e. ( G NeighbVtx 4 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
765 |
|
oveq2 |
|- ( a = 5 -> ( G NeighbVtx a ) = ( G NeighbVtx 5 ) ) |
766 |
765
|
raleqdv |
|- ( a = 5 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 5 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
767 |
765 766
|
raleqbidv |
|- ( a = 5 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 5 ) A. c e. ( G NeighbVtx 5 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
768 |
754 756 758 761 764 767
|
raltp |
|- ( A. a e. { 3 , 4 , 5 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> ( A. b e. ( G NeighbVtx 3 ) A. c e. ( G NeighbVtx 3 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) /\ A. b e. ( G NeighbVtx 4 ) A. c e. ( G NeighbVtx 4 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) /\ A. b e. ( G NeighbVtx 5 ) A. c e. ( G NeighbVtx 5 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
769 |
733 743 753 768
|
mpbir3an |
|- A. a e. { 3 , 4 , 5 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
770 |
|
ralunb |
|- ( A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> ( A. a e. { 0 , 1 , 2 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) /\ A. a e. { 3 , 4 , 5 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
771 |
536 769 770
|
mpbir2an |
|- A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
772 |
|
ianor |
|- ( -. ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) <-> ( -. b =/= c \/ -. { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) |
773 |
|
nne |
|- ( -. b =/= c <-> b = c ) |
774 |
|
ioran |
|- ( -. ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) <-> ( -. ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) /\ -. ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) ) |
775 |
|
ioran |
|- ( -. ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) <-> ( -. ( b = 0 /\ c = 3 ) /\ -. ( b = 3 /\ c = 0 ) ) ) |
776 |
|
ianor |
|- ( -. ( b = 0 /\ c = 3 ) <-> ( -. b = 0 \/ -. c = 3 ) ) |
777 |
|
ianor |
|- ( -. ( b = 3 /\ c = 0 ) <-> ( -. b = 3 \/ -. c = 0 ) ) |
778 |
776 777
|
anbi12i |
|- ( ( -. ( b = 0 /\ c = 3 ) /\ -. ( b = 3 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) ) |
779 |
775 778
|
bitri |
|- ( -. ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) ) |
780 |
|
ioran |
|- ( -. ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) <-> ( -. ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) /\ -. ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) |
781 |
|
3ioran |
|- ( -. ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) <-> ( -. ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) /\ -. ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) /\ -. ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) ) |
782 |
|
ioran |
|- ( -. ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) <-> ( -. ( b = 0 /\ c = 1 ) /\ -. ( b = 1 /\ c = 0 ) ) ) |
783 |
|
ianor |
|- ( -. ( b = 0 /\ c = 1 ) <-> ( -. b = 0 \/ -. c = 1 ) ) |
784 |
|
ianor |
|- ( -. ( b = 1 /\ c = 0 ) <-> ( -. b = 1 \/ -. c = 0 ) ) |
785 |
783 784
|
anbi12i |
|- ( ( -. ( b = 0 /\ c = 1 ) /\ -. ( b = 1 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
786 |
782 785
|
bitri |
|- ( -. ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
787 |
|
ioran |
|- ( -. ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) <-> ( -. ( b = 1 /\ c = 2 ) /\ -. ( b = 2 /\ c = 1 ) ) ) |
788 |
|
ianor |
|- ( -. ( b = 1 /\ c = 2 ) <-> ( -. b = 1 \/ -. c = 2 ) ) |
789 |
|
ianor |
|- ( -. ( b = 2 /\ c = 1 ) <-> ( -. b = 2 \/ -. c = 1 ) ) |
790 |
788 789
|
anbi12i |
|- ( ( -. ( b = 1 /\ c = 2 ) /\ -. ( b = 2 /\ c = 1 ) ) <-> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
791 |
787 790
|
bitri |
|- ( -. ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) <-> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
792 |
|
ioran |
|- ( -. ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) <-> ( -. ( b = 2 /\ c = 3 ) /\ -. ( b = 3 /\ c = 2 ) ) ) |
793 |
|
ianor |
|- ( -. ( b = 2 /\ c = 3 ) <-> ( -. b = 2 \/ -. c = 3 ) ) |
794 |
|
ianor |
|- ( -. ( b = 3 /\ c = 2 ) <-> ( -. b = 3 \/ -. c = 2 ) ) |
795 |
793 794
|
anbi12i |
|- ( ( -. ( b = 2 /\ c = 3 ) /\ -. ( b = 3 /\ c = 2 ) ) <-> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
796 |
792 795
|
bitri |
|- ( -. ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) <-> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
797 |
786 791 796
|
3anbi123i |
|- ( ( -. ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) /\ -. ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) /\ -. ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) <-> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
798 |
781 797
|
bitri |
|- ( -. ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) <-> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
799 |
|
3ioran |
|- ( -. ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) <-> ( -. ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) /\ -. ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) /\ -. ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) |
800 |
|
ioran |
|- ( -. ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) <-> ( -. ( b = 3 /\ c = 4 ) /\ -. ( b = 4 /\ c = 3 ) ) ) |
801 |
|
ianor |
|- ( -. ( b = 3 /\ c = 4 ) <-> ( -. b = 3 \/ -. c = 4 ) ) |
802 |
|
ianor |
|- ( -. ( b = 4 /\ c = 3 ) <-> ( -. b = 4 \/ -. c = 3 ) ) |
803 |
801 802
|
anbi12i |
|- ( ( -. ( b = 3 /\ c = 4 ) /\ -. ( b = 4 /\ c = 3 ) ) <-> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
804 |
800 803
|
bitri |
|- ( -. ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) <-> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
805 |
|
ioran |
|- ( -. ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) <-> ( -. ( b = 4 /\ c = 5 ) /\ -. ( b = 5 /\ c = 4 ) ) ) |
806 |
|
ianor |
|- ( -. ( b = 4 /\ c = 5 ) <-> ( -. b = 4 \/ -. c = 5 ) ) |
807 |
|
ianor |
|- ( -. ( b = 5 /\ c = 4 ) <-> ( -. b = 5 \/ -. c = 4 ) ) |
808 |
806 807
|
anbi12i |
|- ( ( -. ( b = 4 /\ c = 5 ) /\ -. ( b = 5 /\ c = 4 ) ) <-> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
809 |
805 808
|
bitri |
|- ( -. ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) <-> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
810 |
|
ioran |
|- ( -. ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) <-> ( -. ( b = 0 /\ c = 5 ) /\ -. ( b = 5 /\ c = 0 ) ) ) |
811 |
|
ianor |
|- ( -. ( b = 0 /\ c = 5 ) <-> ( -. b = 0 \/ -. c = 5 ) ) |
812 |
|
ianor |
|- ( -. ( b = 5 /\ c = 0 ) <-> ( -. b = 5 \/ -. c = 0 ) ) |
813 |
811 812
|
anbi12i |
|- ( ( -. ( b = 0 /\ c = 5 ) /\ -. ( b = 5 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
814 |
810 813
|
bitri |
|- ( -. ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
815 |
804 809 814
|
3anbi123i |
|- ( ( -. ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) /\ -. ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) /\ -. ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) <-> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
816 |
799 815
|
bitri |
|- ( -. ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) <-> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
817 |
798 816
|
anbi12i |
|- ( ( -. ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) /\ -. ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) <-> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
818 |
780 817
|
bitri |
|- ( -. ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) <-> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
819 |
779 818
|
anbi12i |
|- ( ( -. ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) /\ -. ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) <-> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
820 |
774 819
|
bitri |
|- ( -. ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) <-> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
821 |
6 10 523 524
|
preq12b |
|- ( { b , c } = { 0 , 1 } <-> ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) ) |
822 |
6 10 524 525
|
preq12b |
|- ( { b , c } = { 1 , 2 } <-> ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) ) |
823 |
6 10 525 754
|
preq12b |
|- ( { b , c } = { 2 , 3 } <-> ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) |
824 |
821 822 823
|
3orbi123i |
|- ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) <-> ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) ) |
825 |
6 10 754 756
|
preq12b |
|- ( { b , c } = { 3 , 4 } <-> ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) ) |
826 |
6 10 756 758
|
preq12b |
|- ( { b , c } = { 4 , 5 } <-> ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) ) |
827 |
6 10 523 758
|
preq12b |
|- ( { b , c } = { 0 , 5 } <-> ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) |
828 |
825 826 827
|
3orbi123i |
|- ( ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) <-> ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) |
829 |
824 828
|
orbi12i |
|- ( ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) <-> ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) |
830 |
829
|
orbi2i |
|- ( ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) <-> ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) ) |
831 |
820 830
|
xchnxbir |
|- ( -. ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) <-> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
832 |
|
elun |
|- ( { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) <-> ( { b , c } e. { { 0 , 3 } } \/ { b , c } e. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) |
833 |
|
prex |
|- { b , c } e. _V |
834 |
833
|
elsn |
|- ( { b , c } e. { { 0 , 3 } } <-> { b , c } = { 0 , 3 } ) |
835 |
6 10 523 754
|
preq12b |
|- ( { b , c } = { 0 , 3 } <-> ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) ) |
836 |
834 835
|
bitri |
|- ( { b , c } e. { { 0 , 3 } } <-> ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) ) |
837 |
|
elun |
|- ( { b , c } e. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) <-> ( { b , c } e. { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } \/ { b , c } e. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) |
838 |
833
|
eltp |
|- ( { b , c } e. { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } <-> ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) ) |
839 |
833
|
eltp |
|- ( { b , c } e. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } <-> ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) |
840 |
838 839
|
orbi12i |
|- ( ( { b , c } e. { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } \/ { b , c } e. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) <-> ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) |
841 |
837 840
|
bitri |
|- ( { b , c } e. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) <-> ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) |
842 |
836 841
|
orbi12i |
|- ( ( { b , c } e. { { 0 , 3 } } \/ { b , c } e. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) <-> ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) ) |
843 |
832 842
|
bitri |
|- ( { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) <-> ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) ) |
844 |
831 843
|
xchnxbir |
|- ( -. { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) <-> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
845 |
773 844
|
orbi12i |
|- ( ( -. b =/= c \/ -. { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) <-> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
846 |
772 845
|
bitr2i |
|- ( ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> -. ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) |
847 |
846
|
3ralbii |
|- ( A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) -. ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) |
848 |
|
ralnex3 |
|- ( A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) -. ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) <-> -. E. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) |
849 |
847 848
|
bitri |
|- ( A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> -. E. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) |
850 |
771 849
|
mpbi |
|- -. E. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) |
851 |
1 2 3
|
usgrexmpl2 |
|- G e. USGraph |
852 |
1 2 3
|
usgrexmpl2vtx |
|- ( Vtx ` G ) = ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) |
853 |
852
|
eqcomi |
|- ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) = ( Vtx ` G ) |
854 |
1 2 3
|
usgrexmpl2edg |
|- ( Edg ` G ) = ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) |
855 |
854
|
eqcomi |
|- ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) = ( Edg ` G ) |
856 |
|
eqid |
|- ( G NeighbVtx a ) = ( G NeighbVtx a ) |
857 |
853 855 856
|
usgrgrtrirex |
|- ( G e. USGraph -> ( E. t t e. ( GrTriangles ` G ) <-> E. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) ) |
858 |
851 857
|
ax-mp |
|- ( E. t t e. ( GrTriangles ` G ) <-> E. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) |
859 |
850 858
|
mtbir |
|- -. E. t t e. ( GrTriangles ` G ) |