Metamath Proof Explorer


Theorem usgrexmpl2trifr

Description: G is triangle-free. (Contributed by AV, 10-Aug-2025)

Ref Expression
Hypotheses usgrexmpl2.v
|- V = ( 0 ... 5 )
usgrexmpl2.e
|- E = <" { 0 , 1 } { 1 , 2 } { 2 , 3 } { 3 , 4 } { 4 , 5 } { 0 , 3 } { 0 , 5 } ">
usgrexmpl2.g
|- G = <. V , E >.
Assertion usgrexmpl2trifr
|- -. E. t t e. ( GrTriangles ` G )

Proof

Step Hyp Ref Expression
1 usgrexmpl2.v
 |-  V = ( 0 ... 5 )
2 usgrexmpl2.e
 |-  E = <" { 0 , 1 } { 1 , 2 } { 2 , 3 } { 3 , 4 } { 4 , 5 } { 0 , 3 } { 0 , 5 } ">
3 usgrexmpl2.g
 |-  G = <. V , E >.
4 1 2 3 usgrexmpl2nb0
 |-  ( G NeighbVtx 0 ) = { 1 , 3 , 5 }
5 4 eleq2i
 |-  ( b e. ( G NeighbVtx 0 ) <-> b e. { 1 , 3 , 5 } )
6 vex
 |-  b e. _V
7 6 eltp
 |-  ( b e. { 1 , 3 , 5 } <-> ( b = 1 \/ b = 3 \/ b = 5 ) )
8 5 7 bitri
 |-  ( b e. ( G NeighbVtx 0 ) <-> ( b = 1 \/ b = 3 \/ b = 5 ) )
9 4 eleq2i
 |-  ( c e. ( G NeighbVtx 0 ) <-> c e. { 1 , 3 , 5 } )
10 vex
 |-  c e. _V
11 10 eltp
 |-  ( c e. { 1 , 3 , 5 } <-> ( c = 1 \/ c = 3 \/ c = 5 ) )
12 9 11 bitri
 |-  ( c e. ( G NeighbVtx 0 ) <-> ( c = 1 \/ c = 3 \/ c = 5 ) )
13 eqtr3
 |-  ( ( b = 1 /\ c = 1 ) -> b = c )
14 13 orcd
 |-  ( ( b = 1 /\ c = 1 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
15 ax-1ne0
 |-  1 =/= 0
16 neeq1
 |-  ( b = 1 -> ( b =/= 0 <-> 1 =/= 0 ) )
17 15 16 mpbiri
 |-  ( b = 1 -> b =/= 0 )
18 17 adantr
 |-  ( ( b = 1 /\ c = 3 ) -> b =/= 0 )
19 18 neneqd
 |-  ( ( b = 1 /\ c = 3 ) -> -. b = 0 )
20 19 orcd
 |-  ( ( b = 1 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 3 ) )
21 3ne0
 |-  3 =/= 0
22 neeq1
 |-  ( c = 3 -> ( c =/= 0 <-> 3 =/= 0 ) )
23 21 22 mpbiri
 |-  ( c = 3 -> c =/= 0 )
24 23 adantl
 |-  ( ( b = 1 /\ c = 3 ) -> c =/= 0 )
25 24 neneqd
 |-  ( ( b = 1 /\ c = 3 ) -> -. c = 0 )
26 25 olcd
 |-  ( ( b = 1 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 0 ) )
27 19 orcd
 |-  ( ( b = 1 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 1 ) )
28 25 olcd
 |-  ( ( b = 1 /\ c = 3 ) -> ( -. b = 1 \/ -. c = 0 ) )
29 27 28 jca
 |-  ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) )
30 2re
 |-  2 e. RR
31 2lt3
 |-  2 < 3
32 30 31 gtneii
 |-  3 =/= 2
33 neeq1
 |-  ( c = 3 -> ( c =/= 2 <-> 3 =/= 2 ) )
34 32 33 mpbiri
 |-  ( c = 3 -> c =/= 2 )
35 34 adantl
 |-  ( ( b = 1 /\ c = 3 ) -> c =/= 2 )
36 35 neneqd
 |-  ( ( b = 1 /\ c = 3 ) -> -. c = 2 )
37 36 olcd
 |-  ( ( b = 1 /\ c = 3 ) -> ( -. b = 1 \/ -. c = 2 ) )
38 1re
 |-  1 e. RR
39 1lt3
 |-  1 < 3
40 38 39 gtneii
 |-  3 =/= 1
41 neeq1
 |-  ( c = 3 -> ( c =/= 1 <-> 3 =/= 1 ) )
42 40 41 mpbiri
 |-  ( c = 3 -> c =/= 1 )
43 42 adantl
 |-  ( ( b = 1 /\ c = 3 ) -> c =/= 1 )
44 43 neneqd
 |-  ( ( b = 1 /\ c = 3 ) -> -. c = 1 )
45 44 olcd
 |-  ( ( b = 1 /\ c = 3 ) -> ( -. b = 2 \/ -. c = 1 ) )
46 37 45 jca
 |-  ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) )
47 1ne2
 |-  1 =/= 2
48 neeq1
 |-  ( b = 1 -> ( b =/= 2 <-> 1 =/= 2 ) )
49 47 48 mpbiri
 |-  ( b = 1 -> b =/= 2 )
50 49 adantr
 |-  ( ( b = 1 /\ c = 3 ) -> b =/= 2 )
51 50 neneqd
 |-  ( ( b = 1 /\ c = 3 ) -> -. b = 2 )
52 51 orcd
 |-  ( ( b = 1 /\ c = 3 ) -> ( -. b = 2 \/ -. c = 3 ) )
53 36 olcd
 |-  ( ( b = 1 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 2 ) )
54 52 53 jca
 |-  ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) )
55 29 46 54 3jca
 |-  ( ( b = 1 /\ c = 3 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) )
56 38 39 ltneii
 |-  1 =/= 3
57 neeq1
 |-  ( b = 1 -> ( b =/= 3 <-> 1 =/= 3 ) )
58 56 57 mpbiri
 |-  ( b = 1 -> b =/= 3 )
59 58 adantr
 |-  ( ( b = 1 /\ c = 3 ) -> b =/= 3 )
60 59 neneqd
 |-  ( ( b = 1 /\ c = 3 ) -> -. b = 3 )
61 60 orcd
 |-  ( ( b = 1 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 4 ) )
62 1lt4
 |-  1 < 4
63 38 62 ltneii
 |-  1 =/= 4
64 neeq1
 |-  ( b = 1 -> ( b =/= 4 <-> 1 =/= 4 ) )
65 63 64 mpbiri
 |-  ( b = 1 -> b =/= 4 )
66 65 adantr
 |-  ( ( b = 1 /\ c = 3 ) -> b =/= 4 )
67 66 neneqd
 |-  ( ( b = 1 /\ c = 3 ) -> -. b = 4 )
68 67 orcd
 |-  ( ( b = 1 /\ c = 3 ) -> ( -. b = 4 \/ -. c = 3 ) )
69 61 68 jca
 |-  ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) )
70 67 orcd
 |-  ( ( b = 1 /\ c = 3 ) -> ( -. b = 4 \/ -. c = 5 ) )
71 1lt5
 |-  1 < 5
72 38 71 ltneii
 |-  1 =/= 5
73 neeq1
 |-  ( b = 1 -> ( b =/= 5 <-> 1 =/= 5 ) )
74 72 73 mpbiri
 |-  ( b = 1 -> b =/= 5 )
75 74 adantr
 |-  ( ( b = 1 /\ c = 3 ) -> b =/= 5 )
76 75 neneqd
 |-  ( ( b = 1 /\ c = 3 ) -> -. b = 5 )
77 76 orcd
 |-  ( ( b = 1 /\ c = 3 ) -> ( -. b = 5 \/ -. c = 4 ) )
78 70 77 jca
 |-  ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) )
79 19 orcd
 |-  ( ( b = 1 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 5 ) )
80 25 olcd
 |-  ( ( b = 1 /\ c = 3 ) -> ( -. b = 5 \/ -. c = 0 ) )
81 79 80 jca
 |-  ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) )
82 69 78 81 3jca
 |-  ( ( b = 1 /\ c = 3 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) )
83 55 82 jca
 |-  ( ( b = 1 /\ c = 3 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) )
84 20 26 83 jca31
 |-  ( ( b = 1 /\ c = 3 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
85 84 olcd
 |-  ( ( b = 1 /\ c = 3 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
86 17 adantr
 |-  ( ( b = 1 /\ c = 5 ) -> b =/= 0 )
87 86 neneqd
 |-  ( ( b = 1 /\ c = 5 ) -> -. b = 0 )
88 87 orcd
 |-  ( ( b = 1 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 3 ) )
89 58 adantr
 |-  ( ( b = 1 /\ c = 5 ) -> b =/= 3 )
90 89 neneqd
 |-  ( ( b = 1 /\ c = 5 ) -> -. b = 3 )
91 90 orcd
 |-  ( ( b = 1 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 0 ) )
92 87 orcd
 |-  ( ( b = 1 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 1 ) )
93 0re
 |-  0 e. RR
94 5pos
 |-  0 < 5
95 93 94 gtneii
 |-  5 =/= 0
96 neeq1
 |-  ( c = 5 -> ( c =/= 0 <-> 5 =/= 0 ) )
97 95 96 mpbiri
 |-  ( c = 5 -> c =/= 0 )
98 97 adantl
 |-  ( ( b = 1 /\ c = 5 ) -> c =/= 0 )
99 98 neneqd
 |-  ( ( b = 1 /\ c = 5 ) -> -. c = 0 )
100 99 olcd
 |-  ( ( b = 1 /\ c = 5 ) -> ( -. b = 1 \/ -. c = 0 ) )
101 92 100 jca
 |-  ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) )
102 2lt5
 |-  2 < 5
103 30 102 gtneii
 |-  5 =/= 2
104 neeq1
 |-  ( c = 5 -> ( c =/= 2 <-> 5 =/= 2 ) )
105 103 104 mpbiri
 |-  ( c = 5 -> c =/= 2 )
106 105 adantl
 |-  ( ( b = 1 /\ c = 5 ) -> c =/= 2 )
107 106 neneqd
 |-  ( ( b = 1 /\ c = 5 ) -> -. c = 2 )
108 107 olcd
 |-  ( ( b = 1 /\ c = 5 ) -> ( -. b = 1 \/ -. c = 2 ) )
109 49 adantr
 |-  ( ( b = 1 /\ c = 5 ) -> b =/= 2 )
110 109 neneqd
 |-  ( ( b = 1 /\ c = 5 ) -> -. b = 2 )
111 110 orcd
 |-  ( ( b = 1 /\ c = 5 ) -> ( -. b = 2 \/ -. c = 1 ) )
112 108 111 jca
 |-  ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) )
113 110 orcd
 |-  ( ( b = 1 /\ c = 5 ) -> ( -. b = 2 \/ -. c = 3 ) )
114 90 orcd
 |-  ( ( b = 1 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 2 ) )
115 113 114 jca
 |-  ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) )
116 101 112 115 3jca
 |-  ( ( b = 1 /\ c = 5 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) )
117 90 orcd
 |-  ( ( b = 1 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 4 ) )
118 65 adantr
 |-  ( ( b = 1 /\ c = 5 ) -> b =/= 4 )
119 118 neneqd
 |-  ( ( b = 1 /\ c = 5 ) -> -. b = 4 )
120 119 orcd
 |-  ( ( b = 1 /\ c = 5 ) -> ( -. b = 4 \/ -. c = 3 ) )
121 117 120 jca
 |-  ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) )
122 119 orcd
 |-  ( ( b = 1 /\ c = 5 ) -> ( -. b = 4 \/ -. c = 5 ) )
123 74 adantr
 |-  ( ( b = 1 /\ c = 5 ) -> b =/= 5 )
124 123 neneqd
 |-  ( ( b = 1 /\ c = 5 ) -> -. b = 5 )
125 124 orcd
 |-  ( ( b = 1 /\ c = 5 ) -> ( -. b = 5 \/ -. c = 4 ) )
126 122 125 jca
 |-  ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) )
127 87 orcd
 |-  ( ( b = 1 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 5 ) )
128 99 olcd
 |-  ( ( b = 1 /\ c = 5 ) -> ( -. b = 5 \/ -. c = 0 ) )
129 127 128 jca
 |-  ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) )
130 121 126 129 3jca
 |-  ( ( b = 1 /\ c = 5 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) )
131 116 130 jca
 |-  ( ( b = 1 /\ c = 5 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) )
132 88 91 131 jca31
 |-  ( ( b = 1 /\ c = 5 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
133 132 olcd
 |-  ( ( b = 1 /\ c = 5 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
134 14 85 133 3jaodan
 |-  ( ( b = 1 /\ ( c = 1 \/ c = 3 \/ c = 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
135 neeq1
 |-  ( b = 3 -> ( b =/= 0 <-> 3 =/= 0 ) )
136 21 135 mpbiri
 |-  ( b = 3 -> b =/= 0 )
137 136 adantr
 |-  ( ( b = 3 /\ c = 1 ) -> b =/= 0 )
138 137 neneqd
 |-  ( ( b = 3 /\ c = 1 ) -> -. b = 0 )
139 138 orcd
 |-  ( ( b = 3 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 3 ) )
140 neeq1
 |-  ( c = 1 -> ( c =/= 0 <-> 1 =/= 0 ) )
141 15 140 mpbiri
 |-  ( c = 1 -> c =/= 0 )
142 141 adantl
 |-  ( ( b = 3 /\ c = 1 ) -> c =/= 0 )
143 142 neneqd
 |-  ( ( b = 3 /\ c = 1 ) -> -. c = 0 )
144 143 olcd
 |-  ( ( b = 3 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 0 ) )
145 138 orcd
 |-  ( ( b = 3 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 1 ) )
146 143 olcd
 |-  ( ( b = 3 /\ c = 1 ) -> ( -. b = 1 \/ -. c = 0 ) )
147 145 146 jca
 |-  ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) )
148 58 necon2i
 |-  ( b = 3 -> b =/= 1 )
149 148 adantr
 |-  ( ( b = 3 /\ c = 1 ) -> b =/= 1 )
150 149 neneqd
 |-  ( ( b = 3 /\ c = 1 ) -> -. b = 1 )
151 150 orcd
 |-  ( ( b = 3 /\ c = 1 ) -> ( -. b = 1 \/ -. c = 2 ) )
152 neeq1
 |-  ( b = 3 -> ( b =/= 2 <-> 3 =/= 2 ) )
153 32 152 mpbiri
 |-  ( b = 3 -> b =/= 2 )
154 153 adantr
 |-  ( ( b = 3 /\ c = 1 ) -> b =/= 2 )
155 154 neneqd
 |-  ( ( b = 3 /\ c = 1 ) -> -. b = 2 )
156 155 orcd
 |-  ( ( b = 3 /\ c = 1 ) -> ( -. b = 2 \/ -. c = 1 ) )
157 151 156 jca
 |-  ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) )
158 155 orcd
 |-  ( ( b = 3 /\ c = 1 ) -> ( -. b = 2 \/ -. c = 3 ) )
159 neeq1
 |-  ( c = 1 -> ( c =/= 2 <-> 1 =/= 2 ) )
160 47 159 mpbiri
 |-  ( c = 1 -> c =/= 2 )
161 160 adantl
 |-  ( ( b = 3 /\ c = 1 ) -> c =/= 2 )
162 161 neneqd
 |-  ( ( b = 3 /\ c = 1 ) -> -. c = 2 )
163 162 olcd
 |-  ( ( b = 3 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 2 ) )
164 158 163 jca
 |-  ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) )
165 147 157 164 3jca
 |-  ( ( b = 3 /\ c = 1 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) )
166 neeq1
 |-  ( c = 1 -> ( c =/= 4 <-> 1 =/= 4 ) )
167 63 166 mpbiri
 |-  ( c = 1 -> c =/= 4 )
168 167 adantl
 |-  ( ( b = 3 /\ c = 1 ) -> c =/= 4 )
169 168 neneqd
 |-  ( ( b = 3 /\ c = 1 ) -> -. c = 4 )
170 169 olcd
 |-  ( ( b = 3 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 4 ) )
171 42 necon2i
 |-  ( c = 1 -> c =/= 3 )
172 171 adantl
 |-  ( ( b = 3 /\ c = 1 ) -> c =/= 3 )
173 172 neneqd
 |-  ( ( b = 3 /\ c = 1 ) -> -. c = 3 )
174 173 olcd
 |-  ( ( b = 3 /\ c = 1 ) -> ( -. b = 4 \/ -. c = 3 ) )
175 170 174 jca
 |-  ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) )
176 neeq1
 |-  ( c = 1 -> ( c =/= 5 <-> 1 =/= 5 ) )
177 72 176 mpbiri
 |-  ( c = 1 -> c =/= 5 )
178 177 adantl
 |-  ( ( b = 3 /\ c = 1 ) -> c =/= 5 )
179 178 neneqd
 |-  ( ( b = 3 /\ c = 1 ) -> -. c = 5 )
180 179 olcd
 |-  ( ( b = 3 /\ c = 1 ) -> ( -. b = 4 \/ -. c = 5 ) )
181 169 olcd
 |-  ( ( b = 3 /\ c = 1 ) -> ( -. b = 5 \/ -. c = 4 ) )
182 180 181 jca
 |-  ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) )
183 138 orcd
 |-  ( ( b = 3 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 5 ) )
184 143 olcd
 |-  ( ( b = 3 /\ c = 1 ) -> ( -. b = 5 \/ -. c = 0 ) )
185 183 184 jca
 |-  ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) )
186 175 182 185 3jca
 |-  ( ( b = 3 /\ c = 1 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) )
187 165 186 jca
 |-  ( ( b = 3 /\ c = 1 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) )
188 139 144 187 jca31
 |-  ( ( b = 3 /\ c = 1 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
189 188 olcd
 |-  ( ( b = 3 /\ c = 1 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
190 eqtr3
 |-  ( ( b = 3 /\ c = 3 ) -> b = c )
191 190 orcd
 |-  ( ( b = 3 /\ c = 3 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
192 136 adantr
 |-  ( ( b = 3 /\ c = 5 ) -> b =/= 0 )
193 192 neneqd
 |-  ( ( b = 3 /\ c = 5 ) -> -. b = 0 )
194 193 orcd
 |-  ( ( b = 3 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 3 ) )
195 97 adantl
 |-  ( ( b = 3 /\ c = 5 ) -> c =/= 0 )
196 195 neneqd
 |-  ( ( b = 3 /\ c = 5 ) -> -. c = 0 )
197 196 olcd
 |-  ( ( b = 3 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 0 ) )
198 193 orcd
 |-  ( ( b = 3 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 1 ) )
199 196 olcd
 |-  ( ( b = 3 /\ c = 5 ) -> ( -. b = 1 \/ -. c = 0 ) )
200 198 199 jca
 |-  ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) )
201 148 adantr
 |-  ( ( b = 3 /\ c = 5 ) -> b =/= 1 )
202 201 neneqd
 |-  ( ( b = 3 /\ c = 5 ) -> -. b = 1 )
203 202 orcd
 |-  ( ( b = 3 /\ c = 5 ) -> ( -. b = 1 \/ -. c = 2 ) )
204 177 necon2i
 |-  ( c = 5 -> c =/= 1 )
205 204 adantl
 |-  ( ( b = 3 /\ c = 5 ) -> c =/= 1 )
206 205 neneqd
 |-  ( ( b = 3 /\ c = 5 ) -> -. c = 1 )
207 206 olcd
 |-  ( ( b = 3 /\ c = 5 ) -> ( -. b = 2 \/ -. c = 1 ) )
208 203 207 jca
 |-  ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) )
209 153 adantr
 |-  ( ( b = 3 /\ c = 5 ) -> b =/= 2 )
210 209 neneqd
 |-  ( ( b = 3 /\ c = 5 ) -> -. b = 2 )
211 210 orcd
 |-  ( ( b = 3 /\ c = 5 ) -> ( -. b = 2 \/ -. c = 3 ) )
212 105 adantl
 |-  ( ( b = 3 /\ c = 5 ) -> c =/= 2 )
213 212 neneqd
 |-  ( ( b = 3 /\ c = 5 ) -> -. c = 2 )
214 213 olcd
 |-  ( ( b = 3 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 2 ) )
215 211 214 jca
 |-  ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) )
216 200 208 215 3jca
 |-  ( ( b = 3 /\ c = 5 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) )
217 4re
 |-  4 e. RR
218 4lt5
 |-  4 < 5
219 217 218 gtneii
 |-  5 =/= 4
220 neeq1
 |-  ( c = 5 -> ( c =/= 4 <-> 5 =/= 4 ) )
221 219 220 mpbiri
 |-  ( c = 5 -> c =/= 4 )
222 221 adantl
 |-  ( ( b = 3 /\ c = 5 ) -> c =/= 4 )
223 222 neneqd
 |-  ( ( b = 3 /\ c = 5 ) -> -. c = 4 )
224 223 olcd
 |-  ( ( b = 3 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 4 ) )
225 3re
 |-  3 e. RR
226 3lt4
 |-  3 < 4
227 225 226 ltneii
 |-  3 =/= 4
228 neeq1
 |-  ( b = 3 -> ( b =/= 4 <-> 3 =/= 4 ) )
229 227 228 mpbiri
 |-  ( b = 3 -> b =/= 4 )
230 229 adantr
 |-  ( ( b = 3 /\ c = 5 ) -> b =/= 4 )
231 230 neneqd
 |-  ( ( b = 3 /\ c = 5 ) -> -. b = 4 )
232 231 orcd
 |-  ( ( b = 3 /\ c = 5 ) -> ( -. b = 4 \/ -. c = 3 ) )
233 224 232 jca
 |-  ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) )
234 231 orcd
 |-  ( ( b = 3 /\ c = 5 ) -> ( -. b = 4 \/ -. c = 5 ) )
235 223 olcd
 |-  ( ( b = 3 /\ c = 5 ) -> ( -. b = 5 \/ -. c = 4 ) )
236 234 235 jca
 |-  ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) )
237 193 orcd
 |-  ( ( b = 3 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 5 ) )
238 196 olcd
 |-  ( ( b = 3 /\ c = 5 ) -> ( -. b = 5 \/ -. c = 0 ) )
239 237 238 jca
 |-  ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) )
240 233 236 239 3jca
 |-  ( ( b = 3 /\ c = 5 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) )
241 216 240 jca
 |-  ( ( b = 3 /\ c = 5 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) )
242 194 197 241 jca31
 |-  ( ( b = 3 /\ c = 5 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
243 242 olcd
 |-  ( ( b = 3 /\ c = 5 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
244 189 191 243 3jaodan
 |-  ( ( b = 3 /\ ( c = 1 \/ c = 3 \/ c = 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
245 171 adantl
 |-  ( ( b = 5 /\ c = 1 ) -> c =/= 3 )
246 245 neneqd
 |-  ( ( b = 5 /\ c = 1 ) -> -. c = 3 )
247 246 olcd
 |-  ( ( b = 5 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 3 ) )
248 141 adantl
 |-  ( ( b = 5 /\ c = 1 ) -> c =/= 0 )
249 248 neneqd
 |-  ( ( b = 5 /\ c = 1 ) -> -. c = 0 )
250 249 olcd
 |-  ( ( b = 5 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 0 ) )
251 neeq1
 |-  ( b = 5 -> ( b =/= 0 <-> 5 =/= 0 ) )
252 95 251 mpbiri
 |-  ( b = 5 -> b =/= 0 )
253 252 adantr
 |-  ( ( b = 5 /\ c = 1 ) -> b =/= 0 )
254 253 neneqd
 |-  ( ( b = 5 /\ c = 1 ) -> -. b = 0 )
255 254 orcd
 |-  ( ( b = 5 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 1 ) )
256 249 olcd
 |-  ( ( b = 5 /\ c = 1 ) -> ( -. b = 1 \/ -. c = 0 ) )
257 255 256 jca
 |-  ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) )
258 74 necon2i
 |-  ( b = 5 -> b =/= 1 )
259 258 adantr
 |-  ( ( b = 5 /\ c = 1 ) -> b =/= 1 )
260 259 neneqd
 |-  ( ( b = 5 /\ c = 1 ) -> -. b = 1 )
261 260 orcd
 |-  ( ( b = 5 /\ c = 1 ) -> ( -. b = 1 \/ -. c = 2 ) )
262 neeq1
 |-  ( b = 5 -> ( b =/= 2 <-> 5 =/= 2 ) )
263 103 262 mpbiri
 |-  ( b = 5 -> b =/= 2 )
264 263 adantr
 |-  ( ( b = 5 /\ c = 1 ) -> b =/= 2 )
265 264 neneqd
 |-  ( ( b = 5 /\ c = 1 ) -> -. b = 2 )
266 265 orcd
 |-  ( ( b = 5 /\ c = 1 ) -> ( -. b = 2 \/ -. c = 1 ) )
267 261 266 jca
 |-  ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) )
268 246 olcd
 |-  ( ( b = 5 /\ c = 1 ) -> ( -. b = 2 \/ -. c = 3 ) )
269 160 adantl
 |-  ( ( b = 5 /\ c = 1 ) -> c =/= 2 )
270 269 neneqd
 |-  ( ( b = 5 /\ c = 1 ) -> -. c = 2 )
271 270 olcd
 |-  ( ( b = 5 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 2 ) )
272 268 271 jca
 |-  ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) )
273 257 267 272 3jca
 |-  ( ( b = 5 /\ c = 1 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) )
274 3lt5
 |-  3 < 5
275 225 274 gtneii
 |-  5 =/= 3
276 neeq1
 |-  ( b = 5 -> ( b =/= 3 <-> 5 =/= 3 ) )
277 275 276 mpbiri
 |-  ( b = 5 -> b =/= 3 )
278 277 adantr
 |-  ( ( b = 5 /\ c = 1 ) -> b =/= 3 )
279 278 neneqd
 |-  ( ( b = 5 /\ c = 1 ) -> -. b = 3 )
280 279 orcd
 |-  ( ( b = 5 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 4 ) )
281 246 olcd
 |-  ( ( b = 5 /\ c = 1 ) -> ( -. b = 4 \/ -. c = 3 ) )
282 280 281 jca
 |-  ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) )
283 177 adantl
 |-  ( ( b = 5 /\ c = 1 ) -> c =/= 5 )
284 283 neneqd
 |-  ( ( b = 5 /\ c = 1 ) -> -. c = 5 )
285 284 olcd
 |-  ( ( b = 5 /\ c = 1 ) -> ( -. b = 4 \/ -. c = 5 ) )
286 167 adantl
 |-  ( ( b = 5 /\ c = 1 ) -> c =/= 4 )
287 286 neneqd
 |-  ( ( b = 5 /\ c = 1 ) -> -. c = 4 )
288 287 olcd
 |-  ( ( b = 5 /\ c = 1 ) -> ( -. b = 5 \/ -. c = 4 ) )
289 285 288 jca
 |-  ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) )
290 254 orcd
 |-  ( ( b = 5 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 5 ) )
291 249 olcd
 |-  ( ( b = 5 /\ c = 1 ) -> ( -. b = 5 \/ -. c = 0 ) )
292 290 291 jca
 |-  ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) )
293 282 289 292 3jca
 |-  ( ( b = 5 /\ c = 1 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) )
294 273 293 jca
 |-  ( ( b = 5 /\ c = 1 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) )
295 247 250 294 jca31
 |-  ( ( b = 5 /\ c = 1 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
296 295 olcd
 |-  ( ( b = 5 /\ c = 1 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
297 252 adantr
 |-  ( ( b = 5 /\ c = 3 ) -> b =/= 0 )
298 297 neneqd
 |-  ( ( b = 5 /\ c = 3 ) -> -. b = 0 )
299 298 orcd
 |-  ( ( b = 5 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 3 ) )
300 23 adantl
 |-  ( ( b = 5 /\ c = 3 ) -> c =/= 0 )
301 300 neneqd
 |-  ( ( b = 5 /\ c = 3 ) -> -. c = 0 )
302 301 olcd
 |-  ( ( b = 5 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 0 ) )
303 298 orcd
 |-  ( ( b = 5 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 1 ) )
304 301 olcd
 |-  ( ( b = 5 /\ c = 3 ) -> ( -. b = 1 \/ -. c = 0 ) )
305 303 304 jca
 |-  ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) )
306 258 adantr
 |-  ( ( b = 5 /\ c = 3 ) -> b =/= 1 )
307 306 neneqd
 |-  ( ( b = 5 /\ c = 3 ) -> -. b = 1 )
308 307 orcd
 |-  ( ( b = 5 /\ c = 3 ) -> ( -. b = 1 \/ -. c = 2 ) )
309 42 adantl
 |-  ( ( b = 5 /\ c = 3 ) -> c =/= 1 )
310 309 neneqd
 |-  ( ( b = 5 /\ c = 3 ) -> -. c = 1 )
311 310 olcd
 |-  ( ( b = 5 /\ c = 3 ) -> ( -. b = 2 \/ -. c = 1 ) )
312 308 311 jca
 |-  ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) )
313 263 adantr
 |-  ( ( b = 5 /\ c = 3 ) -> b =/= 2 )
314 313 neneqd
 |-  ( ( b = 5 /\ c = 3 ) -> -. b = 2 )
315 314 orcd
 |-  ( ( b = 5 /\ c = 3 ) -> ( -. b = 2 \/ -. c = 3 ) )
316 277 adantr
 |-  ( ( b = 5 /\ c = 3 ) -> b =/= 3 )
317 316 neneqd
 |-  ( ( b = 5 /\ c = 3 ) -> -. b = 3 )
318 317 orcd
 |-  ( ( b = 5 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 2 ) )
319 315 318 jca
 |-  ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) )
320 305 312 319 3jca
 |-  ( ( b = 5 /\ c = 3 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) )
321 317 orcd
 |-  ( ( b = 5 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 4 ) )
322 neeq1
 |-  ( b = 5 -> ( b =/= 4 <-> 5 =/= 4 ) )
323 219 322 mpbiri
 |-  ( b = 5 -> b =/= 4 )
324 323 adantr
 |-  ( ( b = 5 /\ c = 3 ) -> b =/= 4 )
325 324 neneqd
 |-  ( ( b = 5 /\ c = 3 ) -> -. b = 4 )
326 325 orcd
 |-  ( ( b = 5 /\ c = 3 ) -> ( -. b = 4 \/ -. c = 3 ) )
327 321 326 jca
 |-  ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) )
328 325 orcd
 |-  ( ( b = 5 /\ c = 3 ) -> ( -. b = 4 \/ -. c = 5 ) )
329 neeq1
 |-  ( c = 3 -> ( c =/= 4 <-> 3 =/= 4 ) )
330 227 329 mpbiri
 |-  ( c = 3 -> c =/= 4 )
331 330 adantl
 |-  ( ( b = 5 /\ c = 3 ) -> c =/= 4 )
332 331 neneqd
 |-  ( ( b = 5 /\ c = 3 ) -> -. c = 4 )
333 332 olcd
 |-  ( ( b = 5 /\ c = 3 ) -> ( -. b = 5 \/ -. c = 4 ) )
334 328 333 jca
 |-  ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) )
335 298 orcd
 |-  ( ( b = 5 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 5 ) )
336 301 olcd
 |-  ( ( b = 5 /\ c = 3 ) -> ( -. b = 5 \/ -. c = 0 ) )
337 335 336 jca
 |-  ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) )
338 327 334 337 3jca
 |-  ( ( b = 5 /\ c = 3 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) )
339 320 338 jca
 |-  ( ( b = 5 /\ c = 3 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) )
340 299 302 339 jca31
 |-  ( ( b = 5 /\ c = 3 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
341 340 olcd
 |-  ( ( b = 5 /\ c = 3 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
342 eqtr3
 |-  ( ( b = 5 /\ c = 5 ) -> b = c )
343 342 orcd
 |-  ( ( b = 5 /\ c = 5 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
344 296 341 343 3jaodan
 |-  ( ( b = 5 /\ ( c = 1 \/ c = 3 \/ c = 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
345 134 244 344 3jaoian
 |-  ( ( ( b = 1 \/ b = 3 \/ b = 5 ) /\ ( c = 1 \/ c = 3 \/ c = 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
346 8 12 345 syl2anb
 |-  ( ( b e. ( G NeighbVtx 0 ) /\ c e. ( G NeighbVtx 0 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
347 346 rgen2
 |-  A. b e. ( G NeighbVtx 0 ) A. c e. ( G NeighbVtx 0 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
348 1 2 3 usgrexmpl2nb1
 |-  ( G NeighbVtx 1 ) = { 0 , 2 }
349 348 eleq2i
 |-  ( b e. ( G NeighbVtx 1 ) <-> b e. { 0 , 2 } )
350 6 elpr
 |-  ( b e. { 0 , 2 } <-> ( b = 0 \/ b = 2 ) )
351 349 350 bitri
 |-  ( b e. ( G NeighbVtx 1 ) <-> ( b = 0 \/ b = 2 ) )
352 348 eleq2i
 |-  ( c e. ( G NeighbVtx 1 ) <-> c e. { 0 , 2 } )
353 10 elpr
 |-  ( c e. { 0 , 2 } <-> ( c = 0 \/ c = 2 ) )
354 352 353 bitri
 |-  ( c e. ( G NeighbVtx 1 ) <-> ( c = 0 \/ c = 2 ) )
355 eqtr3
 |-  ( ( b = 0 /\ c = 0 ) -> b = c )
356 355 orcd
 |-  ( ( b = 0 /\ c = 0 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
357 2ne0
 |-  2 =/= 0
358 neeq1
 |-  ( b = 2 -> ( b =/= 0 <-> 2 =/= 0 ) )
359 357 358 mpbiri
 |-  ( b = 2 -> b =/= 0 )
360 359 adantr
 |-  ( ( b = 2 /\ c = 0 ) -> b =/= 0 )
361 360 neneqd
 |-  ( ( b = 2 /\ c = 0 ) -> -. b = 0 )
362 361 orcd
 |-  ( ( b = 2 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 3 ) )
363 153 necon2i
 |-  ( b = 2 -> b =/= 3 )
364 363 adantr
 |-  ( ( b = 2 /\ c = 0 ) -> b =/= 3 )
365 364 neneqd
 |-  ( ( b = 2 /\ c = 0 ) -> -. b = 3 )
366 365 orcd
 |-  ( ( b = 2 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 0 ) )
367 361 orcd
 |-  ( ( b = 2 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 1 ) )
368 49 necon2i
 |-  ( b = 2 -> b =/= 1 )
369 368 adantr
 |-  ( ( b = 2 /\ c = 0 ) -> b =/= 1 )
370 369 neneqd
 |-  ( ( b = 2 /\ c = 0 ) -> -. b = 1 )
371 370 orcd
 |-  ( ( b = 2 /\ c = 0 ) -> ( -. b = 1 \/ -. c = 0 ) )
372 367 371 jca
 |-  ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) )
373 370 orcd
 |-  ( ( b = 2 /\ c = 0 ) -> ( -. b = 1 \/ -. c = 2 ) )
374 141 necon2i
 |-  ( c = 0 -> c =/= 1 )
375 374 adantl
 |-  ( ( b = 2 /\ c = 0 ) -> c =/= 1 )
376 375 neneqd
 |-  ( ( b = 2 /\ c = 0 ) -> -. c = 1 )
377 376 olcd
 |-  ( ( b = 2 /\ c = 0 ) -> ( -. b = 2 \/ -. c = 1 ) )
378 373 377 jca
 |-  ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) )
379 23 necon2i
 |-  ( c = 0 -> c =/= 3 )
380 379 adantl
 |-  ( ( b = 2 /\ c = 0 ) -> c =/= 3 )
381 380 neneqd
 |-  ( ( b = 2 /\ c = 0 ) -> -. c = 3 )
382 381 olcd
 |-  ( ( b = 2 /\ c = 0 ) -> ( -. b = 2 \/ -. c = 3 ) )
383 365 orcd
 |-  ( ( b = 2 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 2 ) )
384 382 383 jca
 |-  ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) )
385 372 378 384 3jca
 |-  ( ( b = 2 /\ c = 0 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) )
386 365 orcd
 |-  ( ( b = 2 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 4 ) )
387 381 olcd
 |-  ( ( b = 2 /\ c = 0 ) -> ( -. b = 4 \/ -. c = 3 ) )
388 386 387 jca
 |-  ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) )
389 97 necon2i
 |-  ( c = 0 -> c =/= 5 )
390 389 adantl
 |-  ( ( b = 2 /\ c = 0 ) -> c =/= 5 )
391 390 neneqd
 |-  ( ( b = 2 /\ c = 0 ) -> -. c = 5 )
392 391 olcd
 |-  ( ( b = 2 /\ c = 0 ) -> ( -. b = 4 \/ -. c = 5 ) )
393 4pos
 |-  0 < 4
394 93 393 ltneii
 |-  0 =/= 4
395 neeq1
 |-  ( c = 0 -> ( c =/= 4 <-> 0 =/= 4 ) )
396 394 395 mpbiri
 |-  ( c = 0 -> c =/= 4 )
397 396 adantl
 |-  ( ( b = 2 /\ c = 0 ) -> c =/= 4 )
398 397 neneqd
 |-  ( ( b = 2 /\ c = 0 ) -> -. c = 4 )
399 398 olcd
 |-  ( ( b = 2 /\ c = 0 ) -> ( -. b = 5 \/ -. c = 4 ) )
400 392 399 jca
 |-  ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) )
401 361 orcd
 |-  ( ( b = 2 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 5 ) )
402 263 necon2i
 |-  ( b = 2 -> b =/= 5 )
403 402 adantr
 |-  ( ( b = 2 /\ c = 0 ) -> b =/= 5 )
404 403 neneqd
 |-  ( ( b = 2 /\ c = 0 ) -> -. b = 5 )
405 404 orcd
 |-  ( ( b = 2 /\ c = 0 ) -> ( -. b = 5 \/ -. c = 0 ) )
406 401 405 jca
 |-  ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) )
407 388 400 406 3jca
 |-  ( ( b = 2 /\ c = 0 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) )
408 385 407 jca
 |-  ( ( b = 2 /\ c = 0 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) )
409 362 366 408 jca31
 |-  ( ( b = 2 /\ c = 0 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
410 409 olcd
 |-  ( ( b = 2 /\ c = 0 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
411 34 necon2i
 |-  ( c = 2 -> c =/= 3 )
412 411 adantl
 |-  ( ( b = 0 /\ c = 2 ) -> c =/= 3 )
413 412 neneqd
 |-  ( ( b = 0 /\ c = 2 ) -> -. c = 3 )
414 413 olcd
 |-  ( ( b = 0 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 3 ) )
415 neeq1
 |-  ( c = 2 -> ( c =/= 0 <-> 2 =/= 0 ) )
416 357 415 mpbiri
 |-  ( c = 2 -> c =/= 0 )
417 416 adantl
 |-  ( ( b = 0 /\ c = 2 ) -> c =/= 0 )
418 417 neneqd
 |-  ( ( b = 0 /\ c = 2 ) -> -. c = 0 )
419 418 olcd
 |-  ( ( b = 0 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 0 ) )
420 160 necon2i
 |-  ( c = 2 -> c =/= 1 )
421 420 adantl
 |-  ( ( b = 0 /\ c = 2 ) -> c =/= 1 )
422 421 neneqd
 |-  ( ( b = 0 /\ c = 2 ) -> -. c = 1 )
423 422 olcd
 |-  ( ( b = 0 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 1 ) )
424 418 olcd
 |-  ( ( b = 0 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 0 ) )
425 423 424 jca
 |-  ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) )
426 17 necon2i
 |-  ( b = 0 -> b =/= 1 )
427 426 adantr
 |-  ( ( b = 0 /\ c = 2 ) -> b =/= 1 )
428 427 neneqd
 |-  ( ( b = 0 /\ c = 2 ) -> -. b = 1 )
429 428 orcd
 |-  ( ( b = 0 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 2 ) )
430 359 necon2i
 |-  ( b = 0 -> b =/= 2 )
431 430 adantr
 |-  ( ( b = 0 /\ c = 2 ) -> b =/= 2 )
432 431 neneqd
 |-  ( ( b = 0 /\ c = 2 ) -> -. b = 2 )
433 432 orcd
 |-  ( ( b = 0 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 1 ) )
434 429 433 jca
 |-  ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) )
435 413 olcd
 |-  ( ( b = 0 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 3 ) )
436 136 necon2i
 |-  ( b = 0 -> b =/= 3 )
437 436 adantr
 |-  ( ( b = 0 /\ c = 2 ) -> b =/= 3 )
438 437 neneqd
 |-  ( ( b = 0 /\ c = 2 ) -> -. b = 3 )
439 438 orcd
 |-  ( ( b = 0 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 2 ) )
440 435 439 jca
 |-  ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) )
441 425 434 440 3jca
 |-  ( ( b = 0 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) )
442 438 orcd
 |-  ( ( b = 0 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 4 ) )
443 413 olcd
 |-  ( ( b = 0 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 3 ) )
444 442 443 jca
 |-  ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) )
445 neeq1
 |-  ( b = 0 -> ( b =/= 4 <-> 0 =/= 4 ) )
446 394 445 mpbiri
 |-  ( b = 0 -> b =/= 4 )
447 446 adantr
 |-  ( ( b = 0 /\ c = 2 ) -> b =/= 4 )
448 447 neneqd
 |-  ( ( b = 0 /\ c = 2 ) -> -. b = 4 )
449 448 orcd
 |-  ( ( b = 0 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 5 ) )
450 252 necon2i
 |-  ( b = 0 -> b =/= 5 )
451 450 adantr
 |-  ( ( b = 0 /\ c = 2 ) -> b =/= 5 )
452 451 neneqd
 |-  ( ( b = 0 /\ c = 2 ) -> -. b = 5 )
453 452 orcd
 |-  ( ( b = 0 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 4 ) )
454 449 453 jca
 |-  ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) )
455 105 necon2i
 |-  ( c = 2 -> c =/= 5 )
456 455 adantl
 |-  ( ( b = 0 /\ c = 2 ) -> c =/= 5 )
457 456 neneqd
 |-  ( ( b = 0 /\ c = 2 ) -> -. c = 5 )
458 457 olcd
 |-  ( ( b = 0 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 5 ) )
459 418 olcd
 |-  ( ( b = 0 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 0 ) )
460 458 459 jca
 |-  ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) )
461 444 454 460 3jca
 |-  ( ( b = 0 /\ c = 2 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) )
462 441 461 jca
 |-  ( ( b = 0 /\ c = 2 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) )
463 414 419 462 jca31
 |-  ( ( b = 0 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
464 463 olcd
 |-  ( ( b = 0 /\ c = 2 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
465 359 adantr
 |-  ( ( b = 2 /\ c = 2 ) -> b =/= 0 )
466 465 neneqd
 |-  ( ( b = 2 /\ c = 2 ) -> -. b = 0 )
467 466 orcd
 |-  ( ( b = 2 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 3 ) )
468 416 adantl
 |-  ( ( b = 2 /\ c = 2 ) -> c =/= 0 )
469 468 neneqd
 |-  ( ( b = 2 /\ c = 2 ) -> -. c = 0 )
470 469 olcd
 |-  ( ( b = 2 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 0 ) )
471 466 orcd
 |-  ( ( b = 2 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 1 ) )
472 469 olcd
 |-  ( ( b = 2 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 0 ) )
473 471 472 jca
 |-  ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) )
474 368 adantr
 |-  ( ( b = 2 /\ c = 2 ) -> b =/= 1 )
475 474 neneqd
 |-  ( ( b = 2 /\ c = 2 ) -> -. b = 1 )
476 475 orcd
 |-  ( ( b = 2 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 2 ) )
477 420 adantl
 |-  ( ( b = 2 /\ c = 2 ) -> c =/= 1 )
478 477 neneqd
 |-  ( ( b = 2 /\ c = 2 ) -> -. c = 1 )
479 478 olcd
 |-  ( ( b = 2 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 1 ) )
480 476 479 jca
 |-  ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) )
481 411 adantl
 |-  ( ( b = 2 /\ c = 2 ) -> c =/= 3 )
482 481 neneqd
 |-  ( ( b = 2 /\ c = 2 ) -> -. c = 3 )
483 482 olcd
 |-  ( ( b = 2 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 3 ) )
484 363 adantr
 |-  ( ( b = 2 /\ c = 2 ) -> b =/= 3 )
485 484 neneqd
 |-  ( ( b = 2 /\ c = 2 ) -> -. b = 3 )
486 485 orcd
 |-  ( ( b = 2 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 2 ) )
487 483 486 jca
 |-  ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) )
488 473 480 487 3jca
 |-  ( ( b = 2 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) )
489 485 orcd
 |-  ( ( b = 2 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 4 ) )
490 2lt4
 |-  2 < 4
491 30 490 ltneii
 |-  2 =/= 4
492 neeq1
 |-  ( b = 2 -> ( b =/= 4 <-> 2 =/= 4 ) )
493 491 492 mpbiri
 |-  ( b = 2 -> b =/= 4 )
494 493 adantr
 |-  ( ( b = 2 /\ c = 2 ) -> b =/= 4 )
495 494 neneqd
 |-  ( ( b = 2 /\ c = 2 ) -> -. b = 4 )
496 495 orcd
 |-  ( ( b = 2 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 3 ) )
497 489 496 jca
 |-  ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) )
498 495 orcd
 |-  ( ( b = 2 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 5 ) )
499 402 adantr
 |-  ( ( b = 2 /\ c = 2 ) -> b =/= 5 )
500 499 neneqd
 |-  ( ( b = 2 /\ c = 2 ) -> -. b = 5 )
501 500 orcd
 |-  ( ( b = 2 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 4 ) )
502 498 501 jca
 |-  ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) )
503 466 orcd
 |-  ( ( b = 2 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 5 ) )
504 469 olcd
 |-  ( ( b = 2 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 0 ) )
505 503 504 jca
 |-  ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) )
506 497 502 505 3jca
 |-  ( ( b = 2 /\ c = 2 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) )
507 488 506 jca
 |-  ( ( b = 2 /\ c = 2 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) )
508 467 470 507 jca31
 |-  ( ( b = 2 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
509 508 olcd
 |-  ( ( b = 2 /\ c = 2 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
510 356 410 464 509 ccase
 |-  ( ( ( b = 0 \/ b = 2 ) /\ ( c = 0 \/ c = 2 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
511 351 354 510 syl2anb
 |-  ( ( b e. ( G NeighbVtx 1 ) /\ c e. ( G NeighbVtx 1 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
512 511 rgen2
 |-  A. b e. ( G NeighbVtx 1 ) A. c e. ( G NeighbVtx 1 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
513 1 2 3 usgrexmpl2nb2
 |-  ( G NeighbVtx 2 ) = { 1 , 3 }
514 513 eleq2i
 |-  ( b e. ( G NeighbVtx 2 ) <-> b e. { 1 , 3 } )
515 6 elpr
 |-  ( b e. { 1 , 3 } <-> ( b = 1 \/ b = 3 ) )
516 514 515 bitri
 |-  ( b e. ( G NeighbVtx 2 ) <-> ( b = 1 \/ b = 3 ) )
517 513 eleq2i
 |-  ( c e. ( G NeighbVtx 2 ) <-> c e. { 1 , 3 } )
518 10 elpr
 |-  ( c e. { 1 , 3 } <-> ( c = 1 \/ c = 3 ) )
519 517 518 bitri
 |-  ( c e. ( G NeighbVtx 2 ) <-> ( c = 1 \/ c = 3 ) )
520 14 189 85 191 ccase
 |-  ( ( ( b = 1 \/ b = 3 ) /\ ( c = 1 \/ c = 3 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
521 516 519 520 syl2anb
 |-  ( ( b e. ( G NeighbVtx 2 ) /\ c e. ( G NeighbVtx 2 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
522 521 rgen2
 |-  A. b e. ( G NeighbVtx 2 ) A. c e. ( G NeighbVtx 2 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
523 c0ex
 |-  0 e. _V
524 1ex
 |-  1 e. _V
525 2ex
 |-  2 e. _V
526 oveq2
 |-  ( a = 0 -> ( G NeighbVtx a ) = ( G NeighbVtx 0 ) )
527 526 raleqdv
 |-  ( a = 0 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 0 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) )
528 526 527 raleqbidv
 |-  ( a = 0 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 0 ) A. c e. ( G NeighbVtx 0 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) )
529 oveq2
 |-  ( a = 1 -> ( G NeighbVtx a ) = ( G NeighbVtx 1 ) )
530 529 raleqdv
 |-  ( a = 1 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 1 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) )
531 529 530 raleqbidv
 |-  ( a = 1 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 1 ) A. c e. ( G NeighbVtx 1 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) )
532 oveq2
 |-  ( a = 2 -> ( G NeighbVtx a ) = ( G NeighbVtx 2 ) )
533 532 raleqdv
 |-  ( a = 2 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 2 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) )
534 532 533 raleqbidv
 |-  ( a = 2 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 2 ) A. c e. ( G NeighbVtx 2 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) )
535 523 524 525 528 531 534 raltp
 |-  ( A. a e. { 0 , 1 , 2 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> ( A. b e. ( G NeighbVtx 0 ) A. c e. ( G NeighbVtx 0 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) /\ A. b e. ( G NeighbVtx 1 ) A. c e. ( G NeighbVtx 1 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) /\ A. b e. ( G NeighbVtx 2 ) A. c e. ( G NeighbVtx 2 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) )
536 347 512 522 535 mpbir3an
 |-  A. a e. { 0 , 1 , 2 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
537 1 2 3 usgrexmpl2nb3
 |-  ( G NeighbVtx 3 ) = { 0 , 2 , 4 }
538 537 eleq2i
 |-  ( b e. ( G NeighbVtx 3 ) <-> b e. { 0 , 2 , 4 } )
539 6 eltp
 |-  ( b e. { 0 , 2 , 4 } <-> ( b = 0 \/ b = 2 \/ b = 4 ) )
540 538 539 bitri
 |-  ( b e. ( G NeighbVtx 3 ) <-> ( b = 0 \/ b = 2 \/ b = 4 ) )
541 537 eleq2i
 |-  ( c e. ( G NeighbVtx 3 ) <-> c e. { 0 , 2 , 4 } )
542 10 eltp
 |-  ( c e. { 0 , 2 , 4 } <-> ( c = 0 \/ c = 2 \/ c = 4 ) )
543 541 542 bitri
 |-  ( c e. ( G NeighbVtx 3 ) <-> ( c = 0 \/ c = 2 \/ c = 4 ) )
544 330 necon2i
 |-  ( c = 4 -> c =/= 3 )
545 544 adantl
 |-  ( ( b = 0 /\ c = 4 ) -> c =/= 3 )
546 545 neneqd
 |-  ( ( b = 0 /\ c = 4 ) -> -. c = 3 )
547 546 olcd
 |-  ( ( b = 0 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 3 ) )
548 436 adantr
 |-  ( ( b = 0 /\ c = 4 ) -> b =/= 3 )
549 548 neneqd
 |-  ( ( b = 0 /\ c = 4 ) -> -. b = 3 )
550 549 orcd
 |-  ( ( b = 0 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 0 ) )
551 167 necon2i
 |-  ( c = 4 -> c =/= 1 )
552 551 adantl
 |-  ( ( b = 0 /\ c = 4 ) -> c =/= 1 )
553 552 neneqd
 |-  ( ( b = 0 /\ c = 4 ) -> -. c = 1 )
554 553 olcd
 |-  ( ( b = 0 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 1 ) )
555 426 adantr
 |-  ( ( b = 0 /\ c = 4 ) -> b =/= 1 )
556 555 neneqd
 |-  ( ( b = 0 /\ c = 4 ) -> -. b = 1 )
557 556 orcd
 |-  ( ( b = 0 /\ c = 4 ) -> ( -. b = 1 \/ -. c = 0 ) )
558 554 557 jca
 |-  ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) )
559 556 orcd
 |-  ( ( b = 0 /\ c = 4 ) -> ( -. b = 1 \/ -. c = 2 ) )
560 430 adantr
 |-  ( ( b = 0 /\ c = 4 ) -> b =/= 2 )
561 560 neneqd
 |-  ( ( b = 0 /\ c = 4 ) -> -. b = 2 )
562 561 orcd
 |-  ( ( b = 0 /\ c = 4 ) -> ( -. b = 2 \/ -. c = 1 ) )
563 559 562 jca
 |-  ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) )
564 546 olcd
 |-  ( ( b = 0 /\ c = 4 ) -> ( -. b = 2 \/ -. c = 3 ) )
565 549 orcd
 |-  ( ( b = 0 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 2 ) )
566 564 565 jca
 |-  ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) )
567 558 563 566 3jca
 |-  ( ( b = 0 /\ c = 4 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) )
568 549 orcd
 |-  ( ( b = 0 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 4 ) )
569 546 olcd
 |-  ( ( b = 0 /\ c = 4 ) -> ( -. b = 4 \/ -. c = 3 ) )
570 568 569 jca
 |-  ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) )
571 446 adantr
 |-  ( ( b = 0 /\ c = 4 ) -> b =/= 4 )
572 571 neneqd
 |-  ( ( b = 0 /\ c = 4 ) -> -. b = 4 )
573 572 orcd
 |-  ( ( b = 0 /\ c = 4 ) -> ( -. b = 4 \/ -. c = 5 ) )
574 450 adantr
 |-  ( ( b = 0 /\ c = 4 ) -> b =/= 5 )
575 574 neneqd
 |-  ( ( b = 0 /\ c = 4 ) -> -. b = 5 )
576 575 orcd
 |-  ( ( b = 0 /\ c = 4 ) -> ( -. b = 5 \/ -. c = 4 ) )
577 573 576 jca
 |-  ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) )
578 221 necon2i
 |-  ( c = 4 -> c =/= 5 )
579 578 adantl
 |-  ( ( b = 0 /\ c = 4 ) -> c =/= 5 )
580 579 neneqd
 |-  ( ( b = 0 /\ c = 4 ) -> -. c = 5 )
581 580 olcd
 |-  ( ( b = 0 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 5 ) )
582 396 necon2i
 |-  ( c = 4 -> c =/= 0 )
583 582 adantl
 |-  ( ( b = 0 /\ c = 4 ) -> c =/= 0 )
584 583 neneqd
 |-  ( ( b = 0 /\ c = 4 ) -> -. c = 0 )
585 584 olcd
 |-  ( ( b = 0 /\ c = 4 ) -> ( -. b = 5 \/ -. c = 0 ) )
586 581 585 jca
 |-  ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) )
587 570 577 586 3jca
 |-  ( ( b = 0 /\ c = 4 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) )
588 567 587 jca
 |-  ( ( b = 0 /\ c = 4 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) )
589 547 550 588 jca31
 |-  ( ( b = 0 /\ c = 4 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
590 589 olcd
 |-  ( ( b = 0 /\ c = 4 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
591 356 464 590 3jaodan
 |-  ( ( b = 0 /\ ( c = 0 \/ c = 2 \/ c = 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
592 359 adantr
 |-  ( ( b = 2 /\ c = 4 ) -> b =/= 0 )
593 592 neneqd
 |-  ( ( b = 2 /\ c = 4 ) -> -. b = 0 )
594 593 orcd
 |-  ( ( b = 2 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 3 ) )
595 582 adantl
 |-  ( ( b = 2 /\ c = 4 ) -> c =/= 0 )
596 595 neneqd
 |-  ( ( b = 2 /\ c = 4 ) -> -. c = 0 )
597 596 olcd
 |-  ( ( b = 2 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 0 ) )
598 593 orcd
 |-  ( ( b = 2 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 1 ) )
599 596 olcd
 |-  ( ( b = 2 /\ c = 4 ) -> ( -. b = 1 \/ -. c = 0 ) )
600 598 599 jca
 |-  ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) )
601 368 adantr
 |-  ( ( b = 2 /\ c = 4 ) -> b =/= 1 )
602 601 neneqd
 |-  ( ( b = 2 /\ c = 4 ) -> -. b = 1 )
603 602 orcd
 |-  ( ( b = 2 /\ c = 4 ) -> ( -. b = 1 \/ -. c = 2 ) )
604 551 adantl
 |-  ( ( b = 2 /\ c = 4 ) -> c =/= 1 )
605 604 neneqd
 |-  ( ( b = 2 /\ c = 4 ) -> -. c = 1 )
606 605 olcd
 |-  ( ( b = 2 /\ c = 4 ) -> ( -. b = 2 \/ -. c = 1 ) )
607 603 606 jca
 |-  ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) )
608 544 adantl
 |-  ( ( b = 2 /\ c = 4 ) -> c =/= 3 )
609 608 neneqd
 |-  ( ( b = 2 /\ c = 4 ) -> -. c = 3 )
610 609 olcd
 |-  ( ( b = 2 /\ c = 4 ) -> ( -. b = 2 \/ -. c = 3 ) )
611 363 adantr
 |-  ( ( b = 2 /\ c = 4 ) -> b =/= 3 )
612 611 neneqd
 |-  ( ( b = 2 /\ c = 4 ) -> -. b = 3 )
613 612 orcd
 |-  ( ( b = 2 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 2 ) )
614 610 613 jca
 |-  ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) )
615 600 607 614 3jca
 |-  ( ( b = 2 /\ c = 4 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) )
616 612 orcd
 |-  ( ( b = 2 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 4 ) )
617 609 olcd
 |-  ( ( b = 2 /\ c = 4 ) -> ( -. b = 4 \/ -. c = 3 ) )
618 616 617 jca
 |-  ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) )
619 493 adantr
 |-  ( ( b = 2 /\ c = 4 ) -> b =/= 4 )
620 619 neneqd
 |-  ( ( b = 2 /\ c = 4 ) -> -. b = 4 )
621 620 orcd
 |-  ( ( b = 2 /\ c = 4 ) -> ( -. b = 4 \/ -. c = 5 ) )
622 402 adantr
 |-  ( ( b = 2 /\ c = 4 ) -> b =/= 5 )
623 622 neneqd
 |-  ( ( b = 2 /\ c = 4 ) -> -. b = 5 )
624 623 orcd
 |-  ( ( b = 2 /\ c = 4 ) -> ( -. b = 5 \/ -. c = 4 ) )
625 621 624 jca
 |-  ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) )
626 593 orcd
 |-  ( ( b = 2 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 5 ) )
627 596 olcd
 |-  ( ( b = 2 /\ c = 4 ) -> ( -. b = 5 \/ -. c = 0 ) )
628 626 627 jca
 |-  ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) )
629 618 625 628 3jca
 |-  ( ( b = 2 /\ c = 4 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) )
630 615 629 jca
 |-  ( ( b = 2 /\ c = 4 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) )
631 594 597 630 jca31
 |-  ( ( b = 2 /\ c = 4 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
632 631 olcd
 |-  ( ( b = 2 /\ c = 4 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
633 410 509 632 3jaodan
 |-  ( ( b = 2 /\ ( c = 0 \/ c = 2 \/ c = 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
634 446 necon2i
 |-  ( b = 4 -> b =/= 0 )
635 634 adantr
 |-  ( ( b = 4 /\ c = 0 ) -> b =/= 0 )
636 635 neneqd
 |-  ( ( b = 4 /\ c = 0 ) -> -. b = 0 )
637 636 orcd
 |-  ( ( b = 4 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 3 ) )
638 229 necon2i
 |-  ( b = 4 -> b =/= 3 )
639 638 adantr
 |-  ( ( b = 4 /\ c = 0 ) -> b =/= 3 )
640 639 neneqd
 |-  ( ( b = 4 /\ c = 0 ) -> -. b = 3 )
641 640 orcd
 |-  ( ( b = 4 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 0 ) )
642 636 orcd
 |-  ( ( b = 4 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 1 ) )
643 65 necon2i
 |-  ( b = 4 -> b =/= 1 )
644 643 adantr
 |-  ( ( b = 4 /\ c = 0 ) -> b =/= 1 )
645 644 neneqd
 |-  ( ( b = 4 /\ c = 0 ) -> -. b = 1 )
646 645 orcd
 |-  ( ( b = 4 /\ c = 0 ) -> ( -. b = 1 \/ -. c = 0 ) )
647 642 646 jca
 |-  ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) )
648 416 necon2i
 |-  ( c = 0 -> c =/= 2 )
649 648 adantl
 |-  ( ( b = 4 /\ c = 0 ) -> c =/= 2 )
650 649 neneqd
 |-  ( ( b = 4 /\ c = 0 ) -> -. c = 2 )
651 650 olcd
 |-  ( ( b = 4 /\ c = 0 ) -> ( -. b = 1 \/ -. c = 2 ) )
652 374 adantl
 |-  ( ( b = 4 /\ c = 0 ) -> c =/= 1 )
653 652 neneqd
 |-  ( ( b = 4 /\ c = 0 ) -> -. c = 1 )
654 653 olcd
 |-  ( ( b = 4 /\ c = 0 ) -> ( -. b = 2 \/ -. c = 1 ) )
655 651 654 jca
 |-  ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) )
656 379 adantl
 |-  ( ( b = 4 /\ c = 0 ) -> c =/= 3 )
657 656 neneqd
 |-  ( ( b = 4 /\ c = 0 ) -> -. c = 3 )
658 657 olcd
 |-  ( ( b = 4 /\ c = 0 ) -> ( -. b = 2 \/ -. c = 3 ) )
659 640 orcd
 |-  ( ( b = 4 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 2 ) )
660 658 659 jca
 |-  ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) )
661 647 655 660 3jca
 |-  ( ( b = 4 /\ c = 0 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) )
662 640 orcd
 |-  ( ( b = 4 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 4 ) )
663 657 olcd
 |-  ( ( b = 4 /\ c = 0 ) -> ( -. b = 4 \/ -. c = 3 ) )
664 662 663 jca
 |-  ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) )
665 389 adantl
 |-  ( ( b = 4 /\ c = 0 ) -> c =/= 5 )
666 665 neneqd
 |-  ( ( b = 4 /\ c = 0 ) -> -. c = 5 )
667 666 olcd
 |-  ( ( b = 4 /\ c = 0 ) -> ( -. b = 4 \/ -. c = 5 ) )
668 396 adantl
 |-  ( ( b = 4 /\ c = 0 ) -> c =/= 4 )
669 668 neneqd
 |-  ( ( b = 4 /\ c = 0 ) -> -. c = 4 )
670 669 olcd
 |-  ( ( b = 4 /\ c = 0 ) -> ( -. b = 5 \/ -. c = 4 ) )
671 667 670 jca
 |-  ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) )
672 636 orcd
 |-  ( ( b = 4 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 5 ) )
673 323 necon2i
 |-  ( b = 4 -> b =/= 5 )
674 673 adantr
 |-  ( ( b = 4 /\ c = 0 ) -> b =/= 5 )
675 674 neneqd
 |-  ( ( b = 4 /\ c = 0 ) -> -. b = 5 )
676 675 orcd
 |-  ( ( b = 4 /\ c = 0 ) -> ( -. b = 5 \/ -. c = 0 ) )
677 672 676 jca
 |-  ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) )
678 664 671 677 3jca
 |-  ( ( b = 4 /\ c = 0 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) )
679 661 678 jca
 |-  ( ( b = 4 /\ c = 0 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) )
680 637 641 679 jca31
 |-  ( ( b = 4 /\ c = 0 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
681 680 olcd
 |-  ( ( b = 4 /\ c = 0 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
682 634 adantr
 |-  ( ( b = 4 /\ c = 2 ) -> b =/= 0 )
683 682 neneqd
 |-  ( ( b = 4 /\ c = 2 ) -> -. b = 0 )
684 683 orcd
 |-  ( ( b = 4 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 3 ) )
685 416 adantl
 |-  ( ( b = 4 /\ c = 2 ) -> c =/= 0 )
686 685 neneqd
 |-  ( ( b = 4 /\ c = 2 ) -> -. c = 0 )
687 686 olcd
 |-  ( ( b = 4 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 0 ) )
688 683 orcd
 |-  ( ( b = 4 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 1 ) )
689 686 olcd
 |-  ( ( b = 4 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 0 ) )
690 688 689 jca
 |-  ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) )
691 643 adantr
 |-  ( ( b = 4 /\ c = 2 ) -> b =/= 1 )
692 691 neneqd
 |-  ( ( b = 4 /\ c = 2 ) -> -. b = 1 )
693 692 orcd
 |-  ( ( b = 4 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 2 ) )
694 420 adantl
 |-  ( ( b = 4 /\ c = 2 ) -> c =/= 1 )
695 694 neneqd
 |-  ( ( b = 4 /\ c = 2 ) -> -. c = 1 )
696 695 olcd
 |-  ( ( b = 4 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 1 ) )
697 693 696 jca
 |-  ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) )
698 493 necon2i
 |-  ( b = 4 -> b =/= 2 )
699 698 adantr
 |-  ( ( b = 4 /\ c = 2 ) -> b =/= 2 )
700 699 neneqd
 |-  ( ( b = 4 /\ c = 2 ) -> -. b = 2 )
701 700 orcd
 |-  ( ( b = 4 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 3 ) )
702 638 adantr
 |-  ( ( b = 4 /\ c = 2 ) -> b =/= 3 )
703 702 neneqd
 |-  ( ( b = 4 /\ c = 2 ) -> -. b = 3 )
704 703 orcd
 |-  ( ( b = 4 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 2 ) )
705 701 704 jca
 |-  ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) )
706 690 697 705 3jca
 |-  ( ( b = 4 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) )
707 703 orcd
 |-  ( ( b = 4 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 4 ) )
708 411 adantl
 |-  ( ( b = 4 /\ c = 2 ) -> c =/= 3 )
709 708 neneqd
 |-  ( ( b = 4 /\ c = 2 ) -> -. c = 3 )
710 709 olcd
 |-  ( ( b = 4 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 3 ) )
711 707 710 jca
 |-  ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) )
712 455 adantl
 |-  ( ( b = 4 /\ c = 2 ) -> c =/= 5 )
713 712 neneqd
 |-  ( ( b = 4 /\ c = 2 ) -> -. c = 5 )
714 713 olcd
 |-  ( ( b = 4 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 5 ) )
715 neeq1
 |-  ( c = 2 -> ( c =/= 4 <-> 2 =/= 4 ) )
716 491 715 mpbiri
 |-  ( c = 2 -> c =/= 4 )
717 716 adantl
 |-  ( ( b = 4 /\ c = 2 ) -> c =/= 4 )
718 717 neneqd
 |-  ( ( b = 4 /\ c = 2 ) -> -. c = 4 )
719 718 olcd
 |-  ( ( b = 4 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 4 ) )
720 714 719 jca
 |-  ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) )
721 683 orcd
 |-  ( ( b = 4 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 5 ) )
722 686 olcd
 |-  ( ( b = 4 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 0 ) )
723 721 722 jca
 |-  ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) )
724 711 720 723 3jca
 |-  ( ( b = 4 /\ c = 2 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) )
725 706 724 jca
 |-  ( ( b = 4 /\ c = 2 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) )
726 684 687 725 jca31
 |-  ( ( b = 4 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
727 726 olcd
 |-  ( ( b = 4 /\ c = 2 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
728 eqtr3
 |-  ( ( b = 4 /\ c = 4 ) -> b = c )
729 728 orcd
 |-  ( ( b = 4 /\ c = 4 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
730 681 727 729 3jaodan
 |-  ( ( b = 4 /\ ( c = 0 \/ c = 2 \/ c = 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
731 591 633 730 3jaoian
 |-  ( ( ( b = 0 \/ b = 2 \/ b = 4 ) /\ ( c = 0 \/ c = 2 \/ c = 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
732 540 543 731 syl2anb
 |-  ( ( b e. ( G NeighbVtx 3 ) /\ c e. ( G NeighbVtx 3 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
733 732 rgen2
 |-  A. b e. ( G NeighbVtx 3 ) A. c e. ( G NeighbVtx 3 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
734 1 2 3 usgrexmpl2nb4
 |-  ( G NeighbVtx 4 ) = { 3 , 5 }
735 734 eleq2i
 |-  ( b e. ( G NeighbVtx 4 ) <-> b e. { 3 , 5 } )
736 6 elpr
 |-  ( b e. { 3 , 5 } <-> ( b = 3 \/ b = 5 ) )
737 735 736 bitri
 |-  ( b e. ( G NeighbVtx 4 ) <-> ( b = 3 \/ b = 5 ) )
738 734 eleq2i
 |-  ( c e. ( G NeighbVtx 4 ) <-> c e. { 3 , 5 } )
739 10 elpr
 |-  ( c e. { 3 , 5 } <-> ( c = 3 \/ c = 5 ) )
740 738 739 bitri
 |-  ( c e. ( G NeighbVtx 4 ) <-> ( c = 3 \/ c = 5 ) )
741 191 341 243 343 ccase
 |-  ( ( ( b = 3 \/ b = 5 ) /\ ( c = 3 \/ c = 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
742 737 740 741 syl2anb
 |-  ( ( b e. ( G NeighbVtx 4 ) /\ c e. ( G NeighbVtx 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
743 742 rgen2
 |-  A. b e. ( G NeighbVtx 4 ) A. c e. ( G NeighbVtx 4 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
744 1 2 3 usgrexmpl2nb5
 |-  ( G NeighbVtx 5 ) = { 0 , 4 }
745 744 eleq2i
 |-  ( b e. ( G NeighbVtx 5 ) <-> b e. { 0 , 4 } )
746 6 elpr
 |-  ( b e. { 0 , 4 } <-> ( b = 0 \/ b = 4 ) )
747 745 746 bitri
 |-  ( b e. ( G NeighbVtx 5 ) <-> ( b = 0 \/ b = 4 ) )
748 744 eleq2i
 |-  ( c e. ( G NeighbVtx 5 ) <-> c e. { 0 , 4 } )
749 10 elpr
 |-  ( c e. { 0 , 4 } <-> ( c = 0 \/ c = 4 ) )
750 748 749 bitri
 |-  ( c e. ( G NeighbVtx 5 ) <-> ( c = 0 \/ c = 4 ) )
751 356 681 590 729 ccase
 |-  ( ( ( b = 0 \/ b = 4 ) /\ ( c = 0 \/ c = 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
752 747 750 751 syl2anb
 |-  ( ( b e. ( G NeighbVtx 5 ) /\ c e. ( G NeighbVtx 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
753 752 rgen2
 |-  A. b e. ( G NeighbVtx 5 ) A. c e. ( G NeighbVtx 5 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
754 3ex
 |-  3 e. _V
755 4nn0
 |-  4 e. NN0
756 755 elexi
 |-  4 e. _V
757 5nn0
 |-  5 e. NN0
758 757 elexi
 |-  5 e. _V
759 oveq2
 |-  ( a = 3 -> ( G NeighbVtx a ) = ( G NeighbVtx 3 ) )
760 759 raleqdv
 |-  ( a = 3 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 3 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) )
761 759 760 raleqbidv
 |-  ( a = 3 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 3 ) A. c e. ( G NeighbVtx 3 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) )
762 oveq2
 |-  ( a = 4 -> ( G NeighbVtx a ) = ( G NeighbVtx 4 ) )
763 762 raleqdv
 |-  ( a = 4 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 4 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) )
764 762 763 raleqbidv
 |-  ( a = 4 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 4 ) A. c e. ( G NeighbVtx 4 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) )
765 oveq2
 |-  ( a = 5 -> ( G NeighbVtx a ) = ( G NeighbVtx 5 ) )
766 765 raleqdv
 |-  ( a = 5 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 5 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) )
767 765 766 raleqbidv
 |-  ( a = 5 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 5 ) A. c e. ( G NeighbVtx 5 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) )
768 754 756 758 761 764 767 raltp
 |-  ( A. a e. { 3 , 4 , 5 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> ( A. b e. ( G NeighbVtx 3 ) A. c e. ( G NeighbVtx 3 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) /\ A. b e. ( G NeighbVtx 4 ) A. c e. ( G NeighbVtx 4 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) /\ A. b e. ( G NeighbVtx 5 ) A. c e. ( G NeighbVtx 5 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) )
769 733 743 753 768 mpbir3an
 |-  A. a e. { 3 , 4 , 5 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
770 ralunb
 |-  ( A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> ( A. a e. { 0 , 1 , 2 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) /\ A. a e. { 3 , 4 , 5 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) )
771 536 769 770 mpbir2an
 |-  A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
772 ianor
 |-  ( -. ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) <-> ( -. b =/= c \/ -. { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) )
773 nne
 |-  ( -. b =/= c <-> b = c )
774 ioran
 |-  ( -. ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) <-> ( -. ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) /\ -. ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) )
775 ioran
 |-  ( -. ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) <-> ( -. ( b = 0 /\ c = 3 ) /\ -. ( b = 3 /\ c = 0 ) ) )
776 ianor
 |-  ( -. ( b = 0 /\ c = 3 ) <-> ( -. b = 0 \/ -. c = 3 ) )
777 ianor
 |-  ( -. ( b = 3 /\ c = 0 ) <-> ( -. b = 3 \/ -. c = 0 ) )
778 776 777 anbi12i
 |-  ( ( -. ( b = 0 /\ c = 3 ) /\ -. ( b = 3 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) )
779 775 778 bitri
 |-  ( -. ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) )
780 ioran
 |-  ( -. ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) <-> ( -. ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) /\ -. ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) )
781 3ioran
 |-  ( -. ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) <-> ( -. ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) /\ -. ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) /\ -. ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) )
782 ioran
 |-  ( -. ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) <-> ( -. ( b = 0 /\ c = 1 ) /\ -. ( b = 1 /\ c = 0 ) ) )
783 ianor
 |-  ( -. ( b = 0 /\ c = 1 ) <-> ( -. b = 0 \/ -. c = 1 ) )
784 ianor
 |-  ( -. ( b = 1 /\ c = 0 ) <-> ( -. b = 1 \/ -. c = 0 ) )
785 783 784 anbi12i
 |-  ( ( -. ( b = 0 /\ c = 1 ) /\ -. ( b = 1 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) )
786 782 785 bitri
 |-  ( -. ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) )
787 ioran
 |-  ( -. ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) <-> ( -. ( b = 1 /\ c = 2 ) /\ -. ( b = 2 /\ c = 1 ) ) )
788 ianor
 |-  ( -. ( b = 1 /\ c = 2 ) <-> ( -. b = 1 \/ -. c = 2 ) )
789 ianor
 |-  ( -. ( b = 2 /\ c = 1 ) <-> ( -. b = 2 \/ -. c = 1 ) )
790 788 789 anbi12i
 |-  ( ( -. ( b = 1 /\ c = 2 ) /\ -. ( b = 2 /\ c = 1 ) ) <-> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) )
791 787 790 bitri
 |-  ( -. ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) <-> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) )
792 ioran
 |-  ( -. ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) <-> ( -. ( b = 2 /\ c = 3 ) /\ -. ( b = 3 /\ c = 2 ) ) )
793 ianor
 |-  ( -. ( b = 2 /\ c = 3 ) <-> ( -. b = 2 \/ -. c = 3 ) )
794 ianor
 |-  ( -. ( b = 3 /\ c = 2 ) <-> ( -. b = 3 \/ -. c = 2 ) )
795 793 794 anbi12i
 |-  ( ( -. ( b = 2 /\ c = 3 ) /\ -. ( b = 3 /\ c = 2 ) ) <-> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) )
796 792 795 bitri
 |-  ( -. ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) <-> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) )
797 786 791 796 3anbi123i
 |-  ( ( -. ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) /\ -. ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) /\ -. ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) <-> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) )
798 781 797 bitri
 |-  ( -. ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) <-> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) )
799 3ioran
 |-  ( -. ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) <-> ( -. ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) /\ -. ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) /\ -. ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) )
800 ioran
 |-  ( -. ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) <-> ( -. ( b = 3 /\ c = 4 ) /\ -. ( b = 4 /\ c = 3 ) ) )
801 ianor
 |-  ( -. ( b = 3 /\ c = 4 ) <-> ( -. b = 3 \/ -. c = 4 ) )
802 ianor
 |-  ( -. ( b = 4 /\ c = 3 ) <-> ( -. b = 4 \/ -. c = 3 ) )
803 801 802 anbi12i
 |-  ( ( -. ( b = 3 /\ c = 4 ) /\ -. ( b = 4 /\ c = 3 ) ) <-> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) )
804 800 803 bitri
 |-  ( -. ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) <-> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) )
805 ioran
 |-  ( -. ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) <-> ( -. ( b = 4 /\ c = 5 ) /\ -. ( b = 5 /\ c = 4 ) ) )
806 ianor
 |-  ( -. ( b = 4 /\ c = 5 ) <-> ( -. b = 4 \/ -. c = 5 ) )
807 ianor
 |-  ( -. ( b = 5 /\ c = 4 ) <-> ( -. b = 5 \/ -. c = 4 ) )
808 806 807 anbi12i
 |-  ( ( -. ( b = 4 /\ c = 5 ) /\ -. ( b = 5 /\ c = 4 ) ) <-> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) )
809 805 808 bitri
 |-  ( -. ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) <-> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) )
810 ioran
 |-  ( -. ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) <-> ( -. ( b = 0 /\ c = 5 ) /\ -. ( b = 5 /\ c = 0 ) ) )
811 ianor
 |-  ( -. ( b = 0 /\ c = 5 ) <-> ( -. b = 0 \/ -. c = 5 ) )
812 ianor
 |-  ( -. ( b = 5 /\ c = 0 ) <-> ( -. b = 5 \/ -. c = 0 ) )
813 811 812 anbi12i
 |-  ( ( -. ( b = 0 /\ c = 5 ) /\ -. ( b = 5 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) )
814 810 813 bitri
 |-  ( -. ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) )
815 804 809 814 3anbi123i
 |-  ( ( -. ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) /\ -. ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) /\ -. ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) <-> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) )
816 799 815 bitri
 |-  ( -. ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) <-> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) )
817 798 816 anbi12i
 |-  ( ( -. ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) /\ -. ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) <-> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) )
818 780 817 bitri
 |-  ( -. ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) <-> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) )
819 779 818 anbi12i
 |-  ( ( -. ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) /\ -. ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) <-> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
820 774 819 bitri
 |-  ( -. ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) <-> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
821 6 10 523 524 preq12b
 |-  ( { b , c } = { 0 , 1 } <-> ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) )
822 6 10 524 525 preq12b
 |-  ( { b , c } = { 1 , 2 } <-> ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) )
823 6 10 525 754 preq12b
 |-  ( { b , c } = { 2 , 3 } <-> ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) )
824 821 822 823 3orbi123i
 |-  ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) <-> ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) )
825 6 10 754 756 preq12b
 |-  ( { b , c } = { 3 , 4 } <-> ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) )
826 6 10 756 758 preq12b
 |-  ( { b , c } = { 4 , 5 } <-> ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) )
827 6 10 523 758 preq12b
 |-  ( { b , c } = { 0 , 5 } <-> ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) )
828 825 826 827 3orbi123i
 |-  ( ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) <-> ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) )
829 824 828 orbi12i
 |-  ( ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) <-> ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) )
830 829 orbi2i
 |-  ( ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) <-> ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) )
831 820 830 xchnxbir
 |-  ( -. ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) <-> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
832 elun
 |-  ( { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) <-> ( { b , c } e. { { 0 , 3 } } \/ { b , c } e. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) )
833 prex
 |-  { b , c } e. _V
834 833 elsn
 |-  ( { b , c } e. { { 0 , 3 } } <-> { b , c } = { 0 , 3 } )
835 6 10 523 754 preq12b
 |-  ( { b , c } = { 0 , 3 } <-> ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) )
836 834 835 bitri
 |-  ( { b , c } e. { { 0 , 3 } } <-> ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) )
837 elun
 |-  ( { b , c } e. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) <-> ( { b , c } e. { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } \/ { b , c } e. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) )
838 833 eltp
 |-  ( { b , c } e. { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } <-> ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) )
839 833 eltp
 |-  ( { b , c } e. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } <-> ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) )
840 838 839 orbi12i
 |-  ( ( { b , c } e. { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } \/ { b , c } e. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) <-> ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) )
841 837 840 bitri
 |-  ( { b , c } e. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) <-> ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) )
842 836 841 orbi12i
 |-  ( ( { b , c } e. { { 0 , 3 } } \/ { b , c } e. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) <-> ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) )
843 832 842 bitri
 |-  ( { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) <-> ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) )
844 831 843 xchnxbir
 |-  ( -. { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) <-> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) )
845 773 844 orbi12i
 |-  ( ( -. b =/= c \/ -. { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) <-> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) )
846 772 845 bitr2i
 |-  ( ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> -. ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) )
847 846 3ralbii
 |-  ( A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) -. ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) )
848 ralnex3
 |-  ( A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) -. ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) <-> -. E. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) )
849 847 848 bitri
 |-  ( A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> -. E. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) )
850 771 849 mpbi
 |-  -. E. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) )
851 1 2 3 usgrexmpl2
 |-  G e. USGraph
852 1 2 3 usgrexmpl2vtx
 |-  ( Vtx ` G ) = ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } )
853 852 eqcomi
 |-  ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) = ( Vtx ` G )
854 1 2 3 usgrexmpl2edg
 |-  ( Edg ` G ) = ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) )
855 854 eqcomi
 |-  ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) = ( Edg ` G )
856 eqid
 |-  ( G NeighbVtx a ) = ( G NeighbVtx a )
857 853 855 856 usgrgrtrirex
 |-  ( G e. USGraph -> ( E. t t e. ( GrTriangles ` G ) <-> E. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) )
858 851 857 ax-mp
 |-  ( E. t t e. ( GrTriangles ` G ) <-> E. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) )
859 850 858 mtbir
 |-  -. E. t t e. ( GrTriangles ` G )