| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrexmpl2.v |
|- V = ( 0 ... 5 ) |
| 2 |
|
usgrexmpl2.e |
|- E = <" { 0 , 1 } { 1 , 2 } { 2 , 3 } { 3 , 4 } { 4 , 5 } { 0 , 3 } { 0 , 5 } "> |
| 3 |
|
usgrexmpl2.g |
|- G = <. V , E >. |
| 4 |
1 2 3
|
usgrexmpl2nb0 |
|- ( G NeighbVtx 0 ) = { 1 , 3 , 5 } |
| 5 |
4
|
eleq2i |
|- ( b e. ( G NeighbVtx 0 ) <-> b e. { 1 , 3 , 5 } ) |
| 6 |
|
vex |
|- b e. _V |
| 7 |
6
|
eltp |
|- ( b e. { 1 , 3 , 5 } <-> ( b = 1 \/ b = 3 \/ b = 5 ) ) |
| 8 |
5 7
|
bitri |
|- ( b e. ( G NeighbVtx 0 ) <-> ( b = 1 \/ b = 3 \/ b = 5 ) ) |
| 9 |
4
|
eleq2i |
|- ( c e. ( G NeighbVtx 0 ) <-> c e. { 1 , 3 , 5 } ) |
| 10 |
|
vex |
|- c e. _V |
| 11 |
10
|
eltp |
|- ( c e. { 1 , 3 , 5 } <-> ( c = 1 \/ c = 3 \/ c = 5 ) ) |
| 12 |
9 11
|
bitri |
|- ( c e. ( G NeighbVtx 0 ) <-> ( c = 1 \/ c = 3 \/ c = 5 ) ) |
| 13 |
|
eqtr3 |
|- ( ( b = 1 /\ c = 1 ) -> b = c ) |
| 14 |
13
|
orcd |
|- ( ( b = 1 /\ c = 1 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 15 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 16 |
|
neeq1 |
|- ( b = 1 -> ( b =/= 0 <-> 1 =/= 0 ) ) |
| 17 |
15 16
|
mpbiri |
|- ( b = 1 -> b =/= 0 ) |
| 18 |
17
|
adantr |
|- ( ( b = 1 /\ c = 3 ) -> b =/= 0 ) |
| 19 |
18
|
neneqd |
|- ( ( b = 1 /\ c = 3 ) -> -. b = 0 ) |
| 20 |
19
|
orcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 21 |
|
3ne0 |
|- 3 =/= 0 |
| 22 |
|
neeq1 |
|- ( c = 3 -> ( c =/= 0 <-> 3 =/= 0 ) ) |
| 23 |
21 22
|
mpbiri |
|- ( c = 3 -> c =/= 0 ) |
| 24 |
23
|
adantl |
|- ( ( b = 1 /\ c = 3 ) -> c =/= 0 ) |
| 25 |
24
|
neneqd |
|- ( ( b = 1 /\ c = 3 ) -> -. c = 0 ) |
| 26 |
25
|
olcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 27 |
19
|
orcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 28 |
25
|
olcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 29 |
27 28
|
jca |
|- ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 30 |
|
2re |
|- 2 e. RR |
| 31 |
|
2lt3 |
|- 2 < 3 |
| 32 |
30 31
|
gtneii |
|- 3 =/= 2 |
| 33 |
|
neeq1 |
|- ( c = 3 -> ( c =/= 2 <-> 3 =/= 2 ) ) |
| 34 |
32 33
|
mpbiri |
|- ( c = 3 -> c =/= 2 ) |
| 35 |
34
|
adantl |
|- ( ( b = 1 /\ c = 3 ) -> c =/= 2 ) |
| 36 |
35
|
neneqd |
|- ( ( b = 1 /\ c = 3 ) -> -. c = 2 ) |
| 37 |
36
|
olcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 38 |
|
1re |
|- 1 e. RR |
| 39 |
|
1lt3 |
|- 1 < 3 |
| 40 |
38 39
|
gtneii |
|- 3 =/= 1 |
| 41 |
|
neeq1 |
|- ( c = 3 -> ( c =/= 1 <-> 3 =/= 1 ) ) |
| 42 |
40 41
|
mpbiri |
|- ( c = 3 -> c =/= 1 ) |
| 43 |
42
|
adantl |
|- ( ( b = 1 /\ c = 3 ) -> c =/= 1 ) |
| 44 |
43
|
neneqd |
|- ( ( b = 1 /\ c = 3 ) -> -. c = 1 ) |
| 45 |
44
|
olcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 46 |
37 45
|
jca |
|- ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 47 |
|
1ne2 |
|- 1 =/= 2 |
| 48 |
|
neeq1 |
|- ( b = 1 -> ( b =/= 2 <-> 1 =/= 2 ) ) |
| 49 |
47 48
|
mpbiri |
|- ( b = 1 -> b =/= 2 ) |
| 50 |
49
|
adantr |
|- ( ( b = 1 /\ c = 3 ) -> b =/= 2 ) |
| 51 |
50
|
neneqd |
|- ( ( b = 1 /\ c = 3 ) -> -. b = 2 ) |
| 52 |
51
|
orcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 53 |
36
|
olcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 54 |
52 53
|
jca |
|- ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 55 |
29 46 54
|
3jca |
|- ( ( b = 1 /\ c = 3 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 56 |
38 39
|
ltneii |
|- 1 =/= 3 |
| 57 |
|
neeq1 |
|- ( b = 1 -> ( b =/= 3 <-> 1 =/= 3 ) ) |
| 58 |
56 57
|
mpbiri |
|- ( b = 1 -> b =/= 3 ) |
| 59 |
58
|
adantr |
|- ( ( b = 1 /\ c = 3 ) -> b =/= 3 ) |
| 60 |
59
|
neneqd |
|- ( ( b = 1 /\ c = 3 ) -> -. b = 3 ) |
| 61 |
60
|
orcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 62 |
|
1lt4 |
|- 1 < 4 |
| 63 |
38 62
|
ltneii |
|- 1 =/= 4 |
| 64 |
|
neeq1 |
|- ( b = 1 -> ( b =/= 4 <-> 1 =/= 4 ) ) |
| 65 |
63 64
|
mpbiri |
|- ( b = 1 -> b =/= 4 ) |
| 66 |
65
|
adantr |
|- ( ( b = 1 /\ c = 3 ) -> b =/= 4 ) |
| 67 |
66
|
neneqd |
|- ( ( b = 1 /\ c = 3 ) -> -. b = 4 ) |
| 68 |
67
|
orcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 69 |
61 68
|
jca |
|- ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 70 |
67
|
orcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 71 |
|
1lt5 |
|- 1 < 5 |
| 72 |
38 71
|
ltneii |
|- 1 =/= 5 |
| 73 |
|
neeq1 |
|- ( b = 1 -> ( b =/= 5 <-> 1 =/= 5 ) ) |
| 74 |
72 73
|
mpbiri |
|- ( b = 1 -> b =/= 5 ) |
| 75 |
74
|
adantr |
|- ( ( b = 1 /\ c = 3 ) -> b =/= 5 ) |
| 76 |
75
|
neneqd |
|- ( ( b = 1 /\ c = 3 ) -> -. b = 5 ) |
| 77 |
76
|
orcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 78 |
70 77
|
jca |
|- ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 79 |
19
|
orcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 80 |
25
|
olcd |
|- ( ( b = 1 /\ c = 3 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 81 |
79 80
|
jca |
|- ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 82 |
69 78 81
|
3jca |
|- ( ( b = 1 /\ c = 3 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 83 |
55 82
|
jca |
|- ( ( b = 1 /\ c = 3 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 84 |
20 26 83
|
jca31 |
|- ( ( b = 1 /\ c = 3 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 85 |
84
|
olcd |
|- ( ( b = 1 /\ c = 3 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 86 |
17
|
adantr |
|- ( ( b = 1 /\ c = 5 ) -> b =/= 0 ) |
| 87 |
86
|
neneqd |
|- ( ( b = 1 /\ c = 5 ) -> -. b = 0 ) |
| 88 |
87
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 89 |
58
|
adantr |
|- ( ( b = 1 /\ c = 5 ) -> b =/= 3 ) |
| 90 |
89
|
neneqd |
|- ( ( b = 1 /\ c = 5 ) -> -. b = 3 ) |
| 91 |
90
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 92 |
87
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 93 |
|
0re |
|- 0 e. RR |
| 94 |
|
5pos |
|- 0 < 5 |
| 95 |
93 94
|
gtneii |
|- 5 =/= 0 |
| 96 |
|
neeq1 |
|- ( c = 5 -> ( c =/= 0 <-> 5 =/= 0 ) ) |
| 97 |
95 96
|
mpbiri |
|- ( c = 5 -> c =/= 0 ) |
| 98 |
97
|
adantl |
|- ( ( b = 1 /\ c = 5 ) -> c =/= 0 ) |
| 99 |
98
|
neneqd |
|- ( ( b = 1 /\ c = 5 ) -> -. c = 0 ) |
| 100 |
99
|
olcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 101 |
92 100
|
jca |
|- ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 102 |
|
2lt5 |
|- 2 < 5 |
| 103 |
30 102
|
gtneii |
|- 5 =/= 2 |
| 104 |
|
neeq1 |
|- ( c = 5 -> ( c =/= 2 <-> 5 =/= 2 ) ) |
| 105 |
103 104
|
mpbiri |
|- ( c = 5 -> c =/= 2 ) |
| 106 |
105
|
adantl |
|- ( ( b = 1 /\ c = 5 ) -> c =/= 2 ) |
| 107 |
106
|
neneqd |
|- ( ( b = 1 /\ c = 5 ) -> -. c = 2 ) |
| 108 |
107
|
olcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 109 |
49
|
adantr |
|- ( ( b = 1 /\ c = 5 ) -> b =/= 2 ) |
| 110 |
109
|
neneqd |
|- ( ( b = 1 /\ c = 5 ) -> -. b = 2 ) |
| 111 |
110
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 112 |
108 111
|
jca |
|- ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 113 |
110
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 114 |
90
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 115 |
113 114
|
jca |
|- ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 116 |
101 112 115
|
3jca |
|- ( ( b = 1 /\ c = 5 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 117 |
90
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 118 |
65
|
adantr |
|- ( ( b = 1 /\ c = 5 ) -> b =/= 4 ) |
| 119 |
118
|
neneqd |
|- ( ( b = 1 /\ c = 5 ) -> -. b = 4 ) |
| 120 |
119
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 121 |
117 120
|
jca |
|- ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 122 |
119
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 123 |
74
|
adantr |
|- ( ( b = 1 /\ c = 5 ) -> b =/= 5 ) |
| 124 |
123
|
neneqd |
|- ( ( b = 1 /\ c = 5 ) -> -. b = 5 ) |
| 125 |
124
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 126 |
122 125
|
jca |
|- ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 127 |
87
|
orcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 128 |
99
|
olcd |
|- ( ( b = 1 /\ c = 5 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 129 |
127 128
|
jca |
|- ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 130 |
121 126 129
|
3jca |
|- ( ( b = 1 /\ c = 5 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 131 |
116 130
|
jca |
|- ( ( b = 1 /\ c = 5 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 132 |
88 91 131
|
jca31 |
|- ( ( b = 1 /\ c = 5 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 133 |
132
|
olcd |
|- ( ( b = 1 /\ c = 5 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 134 |
14 85 133
|
3jaodan |
|- ( ( b = 1 /\ ( c = 1 \/ c = 3 \/ c = 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 135 |
|
neeq1 |
|- ( b = 3 -> ( b =/= 0 <-> 3 =/= 0 ) ) |
| 136 |
21 135
|
mpbiri |
|- ( b = 3 -> b =/= 0 ) |
| 137 |
136
|
adantr |
|- ( ( b = 3 /\ c = 1 ) -> b =/= 0 ) |
| 138 |
137
|
neneqd |
|- ( ( b = 3 /\ c = 1 ) -> -. b = 0 ) |
| 139 |
138
|
orcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 140 |
|
neeq1 |
|- ( c = 1 -> ( c =/= 0 <-> 1 =/= 0 ) ) |
| 141 |
15 140
|
mpbiri |
|- ( c = 1 -> c =/= 0 ) |
| 142 |
141
|
adantl |
|- ( ( b = 3 /\ c = 1 ) -> c =/= 0 ) |
| 143 |
142
|
neneqd |
|- ( ( b = 3 /\ c = 1 ) -> -. c = 0 ) |
| 144 |
143
|
olcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 145 |
138
|
orcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 146 |
143
|
olcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 147 |
145 146
|
jca |
|- ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 148 |
58
|
necon2i |
|- ( b = 3 -> b =/= 1 ) |
| 149 |
148
|
adantr |
|- ( ( b = 3 /\ c = 1 ) -> b =/= 1 ) |
| 150 |
149
|
neneqd |
|- ( ( b = 3 /\ c = 1 ) -> -. b = 1 ) |
| 151 |
150
|
orcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 152 |
|
neeq1 |
|- ( b = 3 -> ( b =/= 2 <-> 3 =/= 2 ) ) |
| 153 |
32 152
|
mpbiri |
|- ( b = 3 -> b =/= 2 ) |
| 154 |
153
|
adantr |
|- ( ( b = 3 /\ c = 1 ) -> b =/= 2 ) |
| 155 |
154
|
neneqd |
|- ( ( b = 3 /\ c = 1 ) -> -. b = 2 ) |
| 156 |
155
|
orcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 157 |
151 156
|
jca |
|- ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 158 |
155
|
orcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 159 |
|
neeq1 |
|- ( c = 1 -> ( c =/= 2 <-> 1 =/= 2 ) ) |
| 160 |
47 159
|
mpbiri |
|- ( c = 1 -> c =/= 2 ) |
| 161 |
160
|
adantl |
|- ( ( b = 3 /\ c = 1 ) -> c =/= 2 ) |
| 162 |
161
|
neneqd |
|- ( ( b = 3 /\ c = 1 ) -> -. c = 2 ) |
| 163 |
162
|
olcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 164 |
158 163
|
jca |
|- ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 165 |
147 157 164
|
3jca |
|- ( ( b = 3 /\ c = 1 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 166 |
|
neeq1 |
|- ( c = 1 -> ( c =/= 4 <-> 1 =/= 4 ) ) |
| 167 |
63 166
|
mpbiri |
|- ( c = 1 -> c =/= 4 ) |
| 168 |
167
|
adantl |
|- ( ( b = 3 /\ c = 1 ) -> c =/= 4 ) |
| 169 |
168
|
neneqd |
|- ( ( b = 3 /\ c = 1 ) -> -. c = 4 ) |
| 170 |
169
|
olcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 171 |
42
|
necon2i |
|- ( c = 1 -> c =/= 3 ) |
| 172 |
171
|
adantl |
|- ( ( b = 3 /\ c = 1 ) -> c =/= 3 ) |
| 173 |
172
|
neneqd |
|- ( ( b = 3 /\ c = 1 ) -> -. c = 3 ) |
| 174 |
173
|
olcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 175 |
170 174
|
jca |
|- ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 176 |
|
neeq1 |
|- ( c = 1 -> ( c =/= 5 <-> 1 =/= 5 ) ) |
| 177 |
72 176
|
mpbiri |
|- ( c = 1 -> c =/= 5 ) |
| 178 |
177
|
adantl |
|- ( ( b = 3 /\ c = 1 ) -> c =/= 5 ) |
| 179 |
178
|
neneqd |
|- ( ( b = 3 /\ c = 1 ) -> -. c = 5 ) |
| 180 |
179
|
olcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 181 |
169
|
olcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 182 |
180 181
|
jca |
|- ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 183 |
138
|
orcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 184 |
143
|
olcd |
|- ( ( b = 3 /\ c = 1 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 185 |
183 184
|
jca |
|- ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 186 |
175 182 185
|
3jca |
|- ( ( b = 3 /\ c = 1 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 187 |
165 186
|
jca |
|- ( ( b = 3 /\ c = 1 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 188 |
139 144 187
|
jca31 |
|- ( ( b = 3 /\ c = 1 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 189 |
188
|
olcd |
|- ( ( b = 3 /\ c = 1 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 190 |
|
eqtr3 |
|- ( ( b = 3 /\ c = 3 ) -> b = c ) |
| 191 |
190
|
orcd |
|- ( ( b = 3 /\ c = 3 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 192 |
136
|
adantr |
|- ( ( b = 3 /\ c = 5 ) -> b =/= 0 ) |
| 193 |
192
|
neneqd |
|- ( ( b = 3 /\ c = 5 ) -> -. b = 0 ) |
| 194 |
193
|
orcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 195 |
97
|
adantl |
|- ( ( b = 3 /\ c = 5 ) -> c =/= 0 ) |
| 196 |
195
|
neneqd |
|- ( ( b = 3 /\ c = 5 ) -> -. c = 0 ) |
| 197 |
196
|
olcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 198 |
193
|
orcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 199 |
196
|
olcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 200 |
198 199
|
jca |
|- ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 201 |
148
|
adantr |
|- ( ( b = 3 /\ c = 5 ) -> b =/= 1 ) |
| 202 |
201
|
neneqd |
|- ( ( b = 3 /\ c = 5 ) -> -. b = 1 ) |
| 203 |
202
|
orcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 204 |
177
|
necon2i |
|- ( c = 5 -> c =/= 1 ) |
| 205 |
204
|
adantl |
|- ( ( b = 3 /\ c = 5 ) -> c =/= 1 ) |
| 206 |
205
|
neneqd |
|- ( ( b = 3 /\ c = 5 ) -> -. c = 1 ) |
| 207 |
206
|
olcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 208 |
203 207
|
jca |
|- ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 209 |
153
|
adantr |
|- ( ( b = 3 /\ c = 5 ) -> b =/= 2 ) |
| 210 |
209
|
neneqd |
|- ( ( b = 3 /\ c = 5 ) -> -. b = 2 ) |
| 211 |
210
|
orcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 212 |
105
|
adantl |
|- ( ( b = 3 /\ c = 5 ) -> c =/= 2 ) |
| 213 |
212
|
neneqd |
|- ( ( b = 3 /\ c = 5 ) -> -. c = 2 ) |
| 214 |
213
|
olcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 215 |
211 214
|
jca |
|- ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 216 |
200 208 215
|
3jca |
|- ( ( b = 3 /\ c = 5 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 217 |
|
4re |
|- 4 e. RR |
| 218 |
|
4lt5 |
|- 4 < 5 |
| 219 |
217 218
|
gtneii |
|- 5 =/= 4 |
| 220 |
|
neeq1 |
|- ( c = 5 -> ( c =/= 4 <-> 5 =/= 4 ) ) |
| 221 |
219 220
|
mpbiri |
|- ( c = 5 -> c =/= 4 ) |
| 222 |
221
|
adantl |
|- ( ( b = 3 /\ c = 5 ) -> c =/= 4 ) |
| 223 |
222
|
neneqd |
|- ( ( b = 3 /\ c = 5 ) -> -. c = 4 ) |
| 224 |
223
|
olcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 225 |
|
3re |
|- 3 e. RR |
| 226 |
|
3lt4 |
|- 3 < 4 |
| 227 |
225 226
|
ltneii |
|- 3 =/= 4 |
| 228 |
|
neeq1 |
|- ( b = 3 -> ( b =/= 4 <-> 3 =/= 4 ) ) |
| 229 |
227 228
|
mpbiri |
|- ( b = 3 -> b =/= 4 ) |
| 230 |
229
|
adantr |
|- ( ( b = 3 /\ c = 5 ) -> b =/= 4 ) |
| 231 |
230
|
neneqd |
|- ( ( b = 3 /\ c = 5 ) -> -. b = 4 ) |
| 232 |
231
|
orcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 233 |
224 232
|
jca |
|- ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 234 |
231
|
orcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 235 |
223
|
olcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 236 |
234 235
|
jca |
|- ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 237 |
193
|
orcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 238 |
196
|
olcd |
|- ( ( b = 3 /\ c = 5 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 239 |
237 238
|
jca |
|- ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 240 |
233 236 239
|
3jca |
|- ( ( b = 3 /\ c = 5 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 241 |
216 240
|
jca |
|- ( ( b = 3 /\ c = 5 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 242 |
194 197 241
|
jca31 |
|- ( ( b = 3 /\ c = 5 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 243 |
242
|
olcd |
|- ( ( b = 3 /\ c = 5 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 244 |
189 191 243
|
3jaodan |
|- ( ( b = 3 /\ ( c = 1 \/ c = 3 \/ c = 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 245 |
171
|
adantl |
|- ( ( b = 5 /\ c = 1 ) -> c =/= 3 ) |
| 246 |
245
|
neneqd |
|- ( ( b = 5 /\ c = 1 ) -> -. c = 3 ) |
| 247 |
246
|
olcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 248 |
141
|
adantl |
|- ( ( b = 5 /\ c = 1 ) -> c =/= 0 ) |
| 249 |
248
|
neneqd |
|- ( ( b = 5 /\ c = 1 ) -> -. c = 0 ) |
| 250 |
249
|
olcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 251 |
|
neeq1 |
|- ( b = 5 -> ( b =/= 0 <-> 5 =/= 0 ) ) |
| 252 |
95 251
|
mpbiri |
|- ( b = 5 -> b =/= 0 ) |
| 253 |
252
|
adantr |
|- ( ( b = 5 /\ c = 1 ) -> b =/= 0 ) |
| 254 |
253
|
neneqd |
|- ( ( b = 5 /\ c = 1 ) -> -. b = 0 ) |
| 255 |
254
|
orcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 256 |
249
|
olcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 257 |
255 256
|
jca |
|- ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 258 |
74
|
necon2i |
|- ( b = 5 -> b =/= 1 ) |
| 259 |
258
|
adantr |
|- ( ( b = 5 /\ c = 1 ) -> b =/= 1 ) |
| 260 |
259
|
neneqd |
|- ( ( b = 5 /\ c = 1 ) -> -. b = 1 ) |
| 261 |
260
|
orcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 262 |
|
neeq1 |
|- ( b = 5 -> ( b =/= 2 <-> 5 =/= 2 ) ) |
| 263 |
103 262
|
mpbiri |
|- ( b = 5 -> b =/= 2 ) |
| 264 |
263
|
adantr |
|- ( ( b = 5 /\ c = 1 ) -> b =/= 2 ) |
| 265 |
264
|
neneqd |
|- ( ( b = 5 /\ c = 1 ) -> -. b = 2 ) |
| 266 |
265
|
orcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 267 |
261 266
|
jca |
|- ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 268 |
246
|
olcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 269 |
160
|
adantl |
|- ( ( b = 5 /\ c = 1 ) -> c =/= 2 ) |
| 270 |
269
|
neneqd |
|- ( ( b = 5 /\ c = 1 ) -> -. c = 2 ) |
| 271 |
270
|
olcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 272 |
268 271
|
jca |
|- ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 273 |
257 267 272
|
3jca |
|- ( ( b = 5 /\ c = 1 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 274 |
|
3lt5 |
|- 3 < 5 |
| 275 |
225 274
|
gtneii |
|- 5 =/= 3 |
| 276 |
|
neeq1 |
|- ( b = 5 -> ( b =/= 3 <-> 5 =/= 3 ) ) |
| 277 |
275 276
|
mpbiri |
|- ( b = 5 -> b =/= 3 ) |
| 278 |
277
|
adantr |
|- ( ( b = 5 /\ c = 1 ) -> b =/= 3 ) |
| 279 |
278
|
neneqd |
|- ( ( b = 5 /\ c = 1 ) -> -. b = 3 ) |
| 280 |
279
|
orcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 281 |
246
|
olcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 282 |
280 281
|
jca |
|- ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 283 |
177
|
adantl |
|- ( ( b = 5 /\ c = 1 ) -> c =/= 5 ) |
| 284 |
283
|
neneqd |
|- ( ( b = 5 /\ c = 1 ) -> -. c = 5 ) |
| 285 |
284
|
olcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 286 |
167
|
adantl |
|- ( ( b = 5 /\ c = 1 ) -> c =/= 4 ) |
| 287 |
286
|
neneqd |
|- ( ( b = 5 /\ c = 1 ) -> -. c = 4 ) |
| 288 |
287
|
olcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 289 |
285 288
|
jca |
|- ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 290 |
254
|
orcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 291 |
249
|
olcd |
|- ( ( b = 5 /\ c = 1 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 292 |
290 291
|
jca |
|- ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 293 |
282 289 292
|
3jca |
|- ( ( b = 5 /\ c = 1 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 294 |
273 293
|
jca |
|- ( ( b = 5 /\ c = 1 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 295 |
247 250 294
|
jca31 |
|- ( ( b = 5 /\ c = 1 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 296 |
295
|
olcd |
|- ( ( b = 5 /\ c = 1 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 297 |
252
|
adantr |
|- ( ( b = 5 /\ c = 3 ) -> b =/= 0 ) |
| 298 |
297
|
neneqd |
|- ( ( b = 5 /\ c = 3 ) -> -. b = 0 ) |
| 299 |
298
|
orcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 300 |
23
|
adantl |
|- ( ( b = 5 /\ c = 3 ) -> c =/= 0 ) |
| 301 |
300
|
neneqd |
|- ( ( b = 5 /\ c = 3 ) -> -. c = 0 ) |
| 302 |
301
|
olcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 303 |
298
|
orcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 304 |
301
|
olcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 305 |
303 304
|
jca |
|- ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 306 |
258
|
adantr |
|- ( ( b = 5 /\ c = 3 ) -> b =/= 1 ) |
| 307 |
306
|
neneqd |
|- ( ( b = 5 /\ c = 3 ) -> -. b = 1 ) |
| 308 |
307
|
orcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 309 |
42
|
adantl |
|- ( ( b = 5 /\ c = 3 ) -> c =/= 1 ) |
| 310 |
309
|
neneqd |
|- ( ( b = 5 /\ c = 3 ) -> -. c = 1 ) |
| 311 |
310
|
olcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 312 |
308 311
|
jca |
|- ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 313 |
263
|
adantr |
|- ( ( b = 5 /\ c = 3 ) -> b =/= 2 ) |
| 314 |
313
|
neneqd |
|- ( ( b = 5 /\ c = 3 ) -> -. b = 2 ) |
| 315 |
314
|
orcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 316 |
277
|
adantr |
|- ( ( b = 5 /\ c = 3 ) -> b =/= 3 ) |
| 317 |
316
|
neneqd |
|- ( ( b = 5 /\ c = 3 ) -> -. b = 3 ) |
| 318 |
317
|
orcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 319 |
315 318
|
jca |
|- ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 320 |
305 312 319
|
3jca |
|- ( ( b = 5 /\ c = 3 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 321 |
317
|
orcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 322 |
|
neeq1 |
|- ( b = 5 -> ( b =/= 4 <-> 5 =/= 4 ) ) |
| 323 |
219 322
|
mpbiri |
|- ( b = 5 -> b =/= 4 ) |
| 324 |
323
|
adantr |
|- ( ( b = 5 /\ c = 3 ) -> b =/= 4 ) |
| 325 |
324
|
neneqd |
|- ( ( b = 5 /\ c = 3 ) -> -. b = 4 ) |
| 326 |
325
|
orcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 327 |
321 326
|
jca |
|- ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 328 |
325
|
orcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 329 |
|
neeq1 |
|- ( c = 3 -> ( c =/= 4 <-> 3 =/= 4 ) ) |
| 330 |
227 329
|
mpbiri |
|- ( c = 3 -> c =/= 4 ) |
| 331 |
330
|
adantl |
|- ( ( b = 5 /\ c = 3 ) -> c =/= 4 ) |
| 332 |
331
|
neneqd |
|- ( ( b = 5 /\ c = 3 ) -> -. c = 4 ) |
| 333 |
332
|
olcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 334 |
328 333
|
jca |
|- ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 335 |
298
|
orcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 336 |
301
|
olcd |
|- ( ( b = 5 /\ c = 3 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 337 |
335 336
|
jca |
|- ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 338 |
327 334 337
|
3jca |
|- ( ( b = 5 /\ c = 3 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 339 |
320 338
|
jca |
|- ( ( b = 5 /\ c = 3 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 340 |
299 302 339
|
jca31 |
|- ( ( b = 5 /\ c = 3 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 341 |
340
|
olcd |
|- ( ( b = 5 /\ c = 3 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 342 |
|
eqtr3 |
|- ( ( b = 5 /\ c = 5 ) -> b = c ) |
| 343 |
342
|
orcd |
|- ( ( b = 5 /\ c = 5 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 344 |
296 341 343
|
3jaodan |
|- ( ( b = 5 /\ ( c = 1 \/ c = 3 \/ c = 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 345 |
134 244 344
|
3jaoian |
|- ( ( ( b = 1 \/ b = 3 \/ b = 5 ) /\ ( c = 1 \/ c = 3 \/ c = 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 346 |
8 12 345
|
syl2anb |
|- ( ( b e. ( G NeighbVtx 0 ) /\ c e. ( G NeighbVtx 0 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 347 |
346
|
rgen2 |
|- A. b e. ( G NeighbVtx 0 ) A. c e. ( G NeighbVtx 0 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 348 |
1 2 3
|
usgrexmpl2nb1 |
|- ( G NeighbVtx 1 ) = { 0 , 2 } |
| 349 |
348
|
eleq2i |
|- ( b e. ( G NeighbVtx 1 ) <-> b e. { 0 , 2 } ) |
| 350 |
6
|
elpr |
|- ( b e. { 0 , 2 } <-> ( b = 0 \/ b = 2 ) ) |
| 351 |
349 350
|
bitri |
|- ( b e. ( G NeighbVtx 1 ) <-> ( b = 0 \/ b = 2 ) ) |
| 352 |
348
|
eleq2i |
|- ( c e. ( G NeighbVtx 1 ) <-> c e. { 0 , 2 } ) |
| 353 |
10
|
elpr |
|- ( c e. { 0 , 2 } <-> ( c = 0 \/ c = 2 ) ) |
| 354 |
352 353
|
bitri |
|- ( c e. ( G NeighbVtx 1 ) <-> ( c = 0 \/ c = 2 ) ) |
| 355 |
|
eqtr3 |
|- ( ( b = 0 /\ c = 0 ) -> b = c ) |
| 356 |
355
|
orcd |
|- ( ( b = 0 /\ c = 0 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 357 |
|
2ne0 |
|- 2 =/= 0 |
| 358 |
|
neeq1 |
|- ( b = 2 -> ( b =/= 0 <-> 2 =/= 0 ) ) |
| 359 |
357 358
|
mpbiri |
|- ( b = 2 -> b =/= 0 ) |
| 360 |
359
|
adantr |
|- ( ( b = 2 /\ c = 0 ) -> b =/= 0 ) |
| 361 |
360
|
neneqd |
|- ( ( b = 2 /\ c = 0 ) -> -. b = 0 ) |
| 362 |
361
|
orcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 363 |
153
|
necon2i |
|- ( b = 2 -> b =/= 3 ) |
| 364 |
363
|
adantr |
|- ( ( b = 2 /\ c = 0 ) -> b =/= 3 ) |
| 365 |
364
|
neneqd |
|- ( ( b = 2 /\ c = 0 ) -> -. b = 3 ) |
| 366 |
365
|
orcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 367 |
361
|
orcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 368 |
49
|
necon2i |
|- ( b = 2 -> b =/= 1 ) |
| 369 |
368
|
adantr |
|- ( ( b = 2 /\ c = 0 ) -> b =/= 1 ) |
| 370 |
369
|
neneqd |
|- ( ( b = 2 /\ c = 0 ) -> -. b = 1 ) |
| 371 |
370
|
orcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 372 |
367 371
|
jca |
|- ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 373 |
370
|
orcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 374 |
141
|
necon2i |
|- ( c = 0 -> c =/= 1 ) |
| 375 |
374
|
adantl |
|- ( ( b = 2 /\ c = 0 ) -> c =/= 1 ) |
| 376 |
375
|
neneqd |
|- ( ( b = 2 /\ c = 0 ) -> -. c = 1 ) |
| 377 |
376
|
olcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 378 |
373 377
|
jca |
|- ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 379 |
23
|
necon2i |
|- ( c = 0 -> c =/= 3 ) |
| 380 |
379
|
adantl |
|- ( ( b = 2 /\ c = 0 ) -> c =/= 3 ) |
| 381 |
380
|
neneqd |
|- ( ( b = 2 /\ c = 0 ) -> -. c = 3 ) |
| 382 |
381
|
olcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 383 |
365
|
orcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 384 |
382 383
|
jca |
|- ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 385 |
372 378 384
|
3jca |
|- ( ( b = 2 /\ c = 0 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 386 |
365
|
orcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 387 |
381
|
olcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 388 |
386 387
|
jca |
|- ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 389 |
97
|
necon2i |
|- ( c = 0 -> c =/= 5 ) |
| 390 |
389
|
adantl |
|- ( ( b = 2 /\ c = 0 ) -> c =/= 5 ) |
| 391 |
390
|
neneqd |
|- ( ( b = 2 /\ c = 0 ) -> -. c = 5 ) |
| 392 |
391
|
olcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 393 |
|
4pos |
|- 0 < 4 |
| 394 |
93 393
|
ltneii |
|- 0 =/= 4 |
| 395 |
|
neeq1 |
|- ( c = 0 -> ( c =/= 4 <-> 0 =/= 4 ) ) |
| 396 |
394 395
|
mpbiri |
|- ( c = 0 -> c =/= 4 ) |
| 397 |
396
|
adantl |
|- ( ( b = 2 /\ c = 0 ) -> c =/= 4 ) |
| 398 |
397
|
neneqd |
|- ( ( b = 2 /\ c = 0 ) -> -. c = 4 ) |
| 399 |
398
|
olcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 400 |
392 399
|
jca |
|- ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 401 |
361
|
orcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 402 |
263
|
necon2i |
|- ( b = 2 -> b =/= 5 ) |
| 403 |
402
|
adantr |
|- ( ( b = 2 /\ c = 0 ) -> b =/= 5 ) |
| 404 |
403
|
neneqd |
|- ( ( b = 2 /\ c = 0 ) -> -. b = 5 ) |
| 405 |
404
|
orcd |
|- ( ( b = 2 /\ c = 0 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 406 |
401 405
|
jca |
|- ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 407 |
388 400 406
|
3jca |
|- ( ( b = 2 /\ c = 0 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 408 |
385 407
|
jca |
|- ( ( b = 2 /\ c = 0 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 409 |
362 366 408
|
jca31 |
|- ( ( b = 2 /\ c = 0 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 410 |
409
|
olcd |
|- ( ( b = 2 /\ c = 0 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 411 |
34
|
necon2i |
|- ( c = 2 -> c =/= 3 ) |
| 412 |
411
|
adantl |
|- ( ( b = 0 /\ c = 2 ) -> c =/= 3 ) |
| 413 |
412
|
neneqd |
|- ( ( b = 0 /\ c = 2 ) -> -. c = 3 ) |
| 414 |
413
|
olcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 415 |
|
neeq1 |
|- ( c = 2 -> ( c =/= 0 <-> 2 =/= 0 ) ) |
| 416 |
357 415
|
mpbiri |
|- ( c = 2 -> c =/= 0 ) |
| 417 |
416
|
adantl |
|- ( ( b = 0 /\ c = 2 ) -> c =/= 0 ) |
| 418 |
417
|
neneqd |
|- ( ( b = 0 /\ c = 2 ) -> -. c = 0 ) |
| 419 |
418
|
olcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 420 |
160
|
necon2i |
|- ( c = 2 -> c =/= 1 ) |
| 421 |
420
|
adantl |
|- ( ( b = 0 /\ c = 2 ) -> c =/= 1 ) |
| 422 |
421
|
neneqd |
|- ( ( b = 0 /\ c = 2 ) -> -. c = 1 ) |
| 423 |
422
|
olcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 424 |
418
|
olcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 425 |
423 424
|
jca |
|- ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 426 |
17
|
necon2i |
|- ( b = 0 -> b =/= 1 ) |
| 427 |
426
|
adantr |
|- ( ( b = 0 /\ c = 2 ) -> b =/= 1 ) |
| 428 |
427
|
neneqd |
|- ( ( b = 0 /\ c = 2 ) -> -. b = 1 ) |
| 429 |
428
|
orcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 430 |
359
|
necon2i |
|- ( b = 0 -> b =/= 2 ) |
| 431 |
430
|
adantr |
|- ( ( b = 0 /\ c = 2 ) -> b =/= 2 ) |
| 432 |
431
|
neneqd |
|- ( ( b = 0 /\ c = 2 ) -> -. b = 2 ) |
| 433 |
432
|
orcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 434 |
429 433
|
jca |
|- ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 435 |
413
|
olcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 436 |
136
|
necon2i |
|- ( b = 0 -> b =/= 3 ) |
| 437 |
436
|
adantr |
|- ( ( b = 0 /\ c = 2 ) -> b =/= 3 ) |
| 438 |
437
|
neneqd |
|- ( ( b = 0 /\ c = 2 ) -> -. b = 3 ) |
| 439 |
438
|
orcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 440 |
435 439
|
jca |
|- ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 441 |
425 434 440
|
3jca |
|- ( ( b = 0 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 442 |
438
|
orcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 443 |
413
|
olcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 444 |
442 443
|
jca |
|- ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 445 |
|
neeq1 |
|- ( b = 0 -> ( b =/= 4 <-> 0 =/= 4 ) ) |
| 446 |
394 445
|
mpbiri |
|- ( b = 0 -> b =/= 4 ) |
| 447 |
446
|
adantr |
|- ( ( b = 0 /\ c = 2 ) -> b =/= 4 ) |
| 448 |
447
|
neneqd |
|- ( ( b = 0 /\ c = 2 ) -> -. b = 4 ) |
| 449 |
448
|
orcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 450 |
252
|
necon2i |
|- ( b = 0 -> b =/= 5 ) |
| 451 |
450
|
adantr |
|- ( ( b = 0 /\ c = 2 ) -> b =/= 5 ) |
| 452 |
451
|
neneqd |
|- ( ( b = 0 /\ c = 2 ) -> -. b = 5 ) |
| 453 |
452
|
orcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 454 |
449 453
|
jca |
|- ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 455 |
105
|
necon2i |
|- ( c = 2 -> c =/= 5 ) |
| 456 |
455
|
adantl |
|- ( ( b = 0 /\ c = 2 ) -> c =/= 5 ) |
| 457 |
456
|
neneqd |
|- ( ( b = 0 /\ c = 2 ) -> -. c = 5 ) |
| 458 |
457
|
olcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 459 |
418
|
olcd |
|- ( ( b = 0 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 460 |
458 459
|
jca |
|- ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 461 |
444 454 460
|
3jca |
|- ( ( b = 0 /\ c = 2 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 462 |
441 461
|
jca |
|- ( ( b = 0 /\ c = 2 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 463 |
414 419 462
|
jca31 |
|- ( ( b = 0 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 464 |
463
|
olcd |
|- ( ( b = 0 /\ c = 2 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 465 |
359
|
adantr |
|- ( ( b = 2 /\ c = 2 ) -> b =/= 0 ) |
| 466 |
465
|
neneqd |
|- ( ( b = 2 /\ c = 2 ) -> -. b = 0 ) |
| 467 |
466
|
orcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 468 |
416
|
adantl |
|- ( ( b = 2 /\ c = 2 ) -> c =/= 0 ) |
| 469 |
468
|
neneqd |
|- ( ( b = 2 /\ c = 2 ) -> -. c = 0 ) |
| 470 |
469
|
olcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 471 |
466
|
orcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 472 |
469
|
olcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 473 |
471 472
|
jca |
|- ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 474 |
368
|
adantr |
|- ( ( b = 2 /\ c = 2 ) -> b =/= 1 ) |
| 475 |
474
|
neneqd |
|- ( ( b = 2 /\ c = 2 ) -> -. b = 1 ) |
| 476 |
475
|
orcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 477 |
420
|
adantl |
|- ( ( b = 2 /\ c = 2 ) -> c =/= 1 ) |
| 478 |
477
|
neneqd |
|- ( ( b = 2 /\ c = 2 ) -> -. c = 1 ) |
| 479 |
478
|
olcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 480 |
476 479
|
jca |
|- ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 481 |
411
|
adantl |
|- ( ( b = 2 /\ c = 2 ) -> c =/= 3 ) |
| 482 |
481
|
neneqd |
|- ( ( b = 2 /\ c = 2 ) -> -. c = 3 ) |
| 483 |
482
|
olcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 484 |
363
|
adantr |
|- ( ( b = 2 /\ c = 2 ) -> b =/= 3 ) |
| 485 |
484
|
neneqd |
|- ( ( b = 2 /\ c = 2 ) -> -. b = 3 ) |
| 486 |
485
|
orcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 487 |
483 486
|
jca |
|- ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 488 |
473 480 487
|
3jca |
|- ( ( b = 2 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 489 |
485
|
orcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 490 |
|
2lt4 |
|- 2 < 4 |
| 491 |
30 490
|
ltneii |
|- 2 =/= 4 |
| 492 |
|
neeq1 |
|- ( b = 2 -> ( b =/= 4 <-> 2 =/= 4 ) ) |
| 493 |
491 492
|
mpbiri |
|- ( b = 2 -> b =/= 4 ) |
| 494 |
493
|
adantr |
|- ( ( b = 2 /\ c = 2 ) -> b =/= 4 ) |
| 495 |
494
|
neneqd |
|- ( ( b = 2 /\ c = 2 ) -> -. b = 4 ) |
| 496 |
495
|
orcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 497 |
489 496
|
jca |
|- ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 498 |
495
|
orcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 499 |
402
|
adantr |
|- ( ( b = 2 /\ c = 2 ) -> b =/= 5 ) |
| 500 |
499
|
neneqd |
|- ( ( b = 2 /\ c = 2 ) -> -. b = 5 ) |
| 501 |
500
|
orcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 502 |
498 501
|
jca |
|- ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 503 |
466
|
orcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 504 |
469
|
olcd |
|- ( ( b = 2 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 505 |
503 504
|
jca |
|- ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 506 |
497 502 505
|
3jca |
|- ( ( b = 2 /\ c = 2 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 507 |
488 506
|
jca |
|- ( ( b = 2 /\ c = 2 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 508 |
467 470 507
|
jca31 |
|- ( ( b = 2 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 509 |
508
|
olcd |
|- ( ( b = 2 /\ c = 2 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 510 |
356 410 464 509
|
ccase |
|- ( ( ( b = 0 \/ b = 2 ) /\ ( c = 0 \/ c = 2 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 511 |
351 354 510
|
syl2anb |
|- ( ( b e. ( G NeighbVtx 1 ) /\ c e. ( G NeighbVtx 1 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 512 |
511
|
rgen2 |
|- A. b e. ( G NeighbVtx 1 ) A. c e. ( G NeighbVtx 1 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 513 |
1 2 3
|
usgrexmpl2nb2 |
|- ( G NeighbVtx 2 ) = { 1 , 3 } |
| 514 |
513
|
eleq2i |
|- ( b e. ( G NeighbVtx 2 ) <-> b e. { 1 , 3 } ) |
| 515 |
6
|
elpr |
|- ( b e. { 1 , 3 } <-> ( b = 1 \/ b = 3 ) ) |
| 516 |
514 515
|
bitri |
|- ( b e. ( G NeighbVtx 2 ) <-> ( b = 1 \/ b = 3 ) ) |
| 517 |
513
|
eleq2i |
|- ( c e. ( G NeighbVtx 2 ) <-> c e. { 1 , 3 } ) |
| 518 |
10
|
elpr |
|- ( c e. { 1 , 3 } <-> ( c = 1 \/ c = 3 ) ) |
| 519 |
517 518
|
bitri |
|- ( c e. ( G NeighbVtx 2 ) <-> ( c = 1 \/ c = 3 ) ) |
| 520 |
14 189 85 191
|
ccase |
|- ( ( ( b = 1 \/ b = 3 ) /\ ( c = 1 \/ c = 3 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 521 |
516 519 520
|
syl2anb |
|- ( ( b e. ( G NeighbVtx 2 ) /\ c e. ( G NeighbVtx 2 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 522 |
521
|
rgen2 |
|- A. b e. ( G NeighbVtx 2 ) A. c e. ( G NeighbVtx 2 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 523 |
|
c0ex |
|- 0 e. _V |
| 524 |
|
1ex |
|- 1 e. _V |
| 525 |
|
2ex |
|- 2 e. _V |
| 526 |
|
oveq2 |
|- ( a = 0 -> ( G NeighbVtx a ) = ( G NeighbVtx 0 ) ) |
| 527 |
526
|
raleqdv |
|- ( a = 0 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 0 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 528 |
526 527
|
raleqbidv |
|- ( a = 0 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 0 ) A. c e. ( G NeighbVtx 0 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 529 |
|
oveq2 |
|- ( a = 1 -> ( G NeighbVtx a ) = ( G NeighbVtx 1 ) ) |
| 530 |
529
|
raleqdv |
|- ( a = 1 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 1 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 531 |
529 530
|
raleqbidv |
|- ( a = 1 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 1 ) A. c e. ( G NeighbVtx 1 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 532 |
|
oveq2 |
|- ( a = 2 -> ( G NeighbVtx a ) = ( G NeighbVtx 2 ) ) |
| 533 |
532
|
raleqdv |
|- ( a = 2 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 2 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 534 |
532 533
|
raleqbidv |
|- ( a = 2 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 2 ) A. c e. ( G NeighbVtx 2 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 535 |
523 524 525 528 531 534
|
raltp |
|- ( A. a e. { 0 , 1 , 2 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> ( A. b e. ( G NeighbVtx 0 ) A. c e. ( G NeighbVtx 0 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) /\ A. b e. ( G NeighbVtx 1 ) A. c e. ( G NeighbVtx 1 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) /\ A. b e. ( G NeighbVtx 2 ) A. c e. ( G NeighbVtx 2 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 536 |
347 512 522 535
|
mpbir3an |
|- A. a e. { 0 , 1 , 2 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 537 |
1 2 3
|
usgrexmpl2nb3 |
|- ( G NeighbVtx 3 ) = { 0 , 2 , 4 } |
| 538 |
537
|
eleq2i |
|- ( b e. ( G NeighbVtx 3 ) <-> b e. { 0 , 2 , 4 } ) |
| 539 |
6
|
eltp |
|- ( b e. { 0 , 2 , 4 } <-> ( b = 0 \/ b = 2 \/ b = 4 ) ) |
| 540 |
538 539
|
bitri |
|- ( b e. ( G NeighbVtx 3 ) <-> ( b = 0 \/ b = 2 \/ b = 4 ) ) |
| 541 |
537
|
eleq2i |
|- ( c e. ( G NeighbVtx 3 ) <-> c e. { 0 , 2 , 4 } ) |
| 542 |
10
|
eltp |
|- ( c e. { 0 , 2 , 4 } <-> ( c = 0 \/ c = 2 \/ c = 4 ) ) |
| 543 |
541 542
|
bitri |
|- ( c e. ( G NeighbVtx 3 ) <-> ( c = 0 \/ c = 2 \/ c = 4 ) ) |
| 544 |
330
|
necon2i |
|- ( c = 4 -> c =/= 3 ) |
| 545 |
544
|
adantl |
|- ( ( b = 0 /\ c = 4 ) -> c =/= 3 ) |
| 546 |
545
|
neneqd |
|- ( ( b = 0 /\ c = 4 ) -> -. c = 3 ) |
| 547 |
546
|
olcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 548 |
436
|
adantr |
|- ( ( b = 0 /\ c = 4 ) -> b =/= 3 ) |
| 549 |
548
|
neneqd |
|- ( ( b = 0 /\ c = 4 ) -> -. b = 3 ) |
| 550 |
549
|
orcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 551 |
167
|
necon2i |
|- ( c = 4 -> c =/= 1 ) |
| 552 |
551
|
adantl |
|- ( ( b = 0 /\ c = 4 ) -> c =/= 1 ) |
| 553 |
552
|
neneqd |
|- ( ( b = 0 /\ c = 4 ) -> -. c = 1 ) |
| 554 |
553
|
olcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 555 |
426
|
adantr |
|- ( ( b = 0 /\ c = 4 ) -> b =/= 1 ) |
| 556 |
555
|
neneqd |
|- ( ( b = 0 /\ c = 4 ) -> -. b = 1 ) |
| 557 |
556
|
orcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 558 |
554 557
|
jca |
|- ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 559 |
556
|
orcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 560 |
430
|
adantr |
|- ( ( b = 0 /\ c = 4 ) -> b =/= 2 ) |
| 561 |
560
|
neneqd |
|- ( ( b = 0 /\ c = 4 ) -> -. b = 2 ) |
| 562 |
561
|
orcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 563 |
559 562
|
jca |
|- ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 564 |
546
|
olcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 565 |
549
|
orcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 566 |
564 565
|
jca |
|- ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 567 |
558 563 566
|
3jca |
|- ( ( b = 0 /\ c = 4 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 568 |
549
|
orcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 569 |
546
|
olcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 570 |
568 569
|
jca |
|- ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 571 |
446
|
adantr |
|- ( ( b = 0 /\ c = 4 ) -> b =/= 4 ) |
| 572 |
571
|
neneqd |
|- ( ( b = 0 /\ c = 4 ) -> -. b = 4 ) |
| 573 |
572
|
orcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 574 |
450
|
adantr |
|- ( ( b = 0 /\ c = 4 ) -> b =/= 5 ) |
| 575 |
574
|
neneqd |
|- ( ( b = 0 /\ c = 4 ) -> -. b = 5 ) |
| 576 |
575
|
orcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 577 |
573 576
|
jca |
|- ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 578 |
221
|
necon2i |
|- ( c = 4 -> c =/= 5 ) |
| 579 |
578
|
adantl |
|- ( ( b = 0 /\ c = 4 ) -> c =/= 5 ) |
| 580 |
579
|
neneqd |
|- ( ( b = 0 /\ c = 4 ) -> -. c = 5 ) |
| 581 |
580
|
olcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 582 |
396
|
necon2i |
|- ( c = 4 -> c =/= 0 ) |
| 583 |
582
|
adantl |
|- ( ( b = 0 /\ c = 4 ) -> c =/= 0 ) |
| 584 |
583
|
neneqd |
|- ( ( b = 0 /\ c = 4 ) -> -. c = 0 ) |
| 585 |
584
|
olcd |
|- ( ( b = 0 /\ c = 4 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 586 |
581 585
|
jca |
|- ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 587 |
570 577 586
|
3jca |
|- ( ( b = 0 /\ c = 4 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 588 |
567 587
|
jca |
|- ( ( b = 0 /\ c = 4 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 589 |
547 550 588
|
jca31 |
|- ( ( b = 0 /\ c = 4 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 590 |
589
|
olcd |
|- ( ( b = 0 /\ c = 4 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 591 |
356 464 590
|
3jaodan |
|- ( ( b = 0 /\ ( c = 0 \/ c = 2 \/ c = 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 592 |
359
|
adantr |
|- ( ( b = 2 /\ c = 4 ) -> b =/= 0 ) |
| 593 |
592
|
neneqd |
|- ( ( b = 2 /\ c = 4 ) -> -. b = 0 ) |
| 594 |
593
|
orcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 595 |
582
|
adantl |
|- ( ( b = 2 /\ c = 4 ) -> c =/= 0 ) |
| 596 |
595
|
neneqd |
|- ( ( b = 2 /\ c = 4 ) -> -. c = 0 ) |
| 597 |
596
|
olcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 598 |
593
|
orcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 599 |
596
|
olcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 600 |
598 599
|
jca |
|- ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 601 |
368
|
adantr |
|- ( ( b = 2 /\ c = 4 ) -> b =/= 1 ) |
| 602 |
601
|
neneqd |
|- ( ( b = 2 /\ c = 4 ) -> -. b = 1 ) |
| 603 |
602
|
orcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 604 |
551
|
adantl |
|- ( ( b = 2 /\ c = 4 ) -> c =/= 1 ) |
| 605 |
604
|
neneqd |
|- ( ( b = 2 /\ c = 4 ) -> -. c = 1 ) |
| 606 |
605
|
olcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 607 |
603 606
|
jca |
|- ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 608 |
544
|
adantl |
|- ( ( b = 2 /\ c = 4 ) -> c =/= 3 ) |
| 609 |
608
|
neneqd |
|- ( ( b = 2 /\ c = 4 ) -> -. c = 3 ) |
| 610 |
609
|
olcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 611 |
363
|
adantr |
|- ( ( b = 2 /\ c = 4 ) -> b =/= 3 ) |
| 612 |
611
|
neneqd |
|- ( ( b = 2 /\ c = 4 ) -> -. b = 3 ) |
| 613 |
612
|
orcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 614 |
610 613
|
jca |
|- ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 615 |
600 607 614
|
3jca |
|- ( ( b = 2 /\ c = 4 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 616 |
612
|
orcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 617 |
609
|
olcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 618 |
616 617
|
jca |
|- ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 619 |
493
|
adantr |
|- ( ( b = 2 /\ c = 4 ) -> b =/= 4 ) |
| 620 |
619
|
neneqd |
|- ( ( b = 2 /\ c = 4 ) -> -. b = 4 ) |
| 621 |
620
|
orcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 622 |
402
|
adantr |
|- ( ( b = 2 /\ c = 4 ) -> b =/= 5 ) |
| 623 |
622
|
neneqd |
|- ( ( b = 2 /\ c = 4 ) -> -. b = 5 ) |
| 624 |
623
|
orcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 625 |
621 624
|
jca |
|- ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 626 |
593
|
orcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 627 |
596
|
olcd |
|- ( ( b = 2 /\ c = 4 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 628 |
626 627
|
jca |
|- ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 629 |
618 625 628
|
3jca |
|- ( ( b = 2 /\ c = 4 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 630 |
615 629
|
jca |
|- ( ( b = 2 /\ c = 4 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 631 |
594 597 630
|
jca31 |
|- ( ( b = 2 /\ c = 4 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 632 |
631
|
olcd |
|- ( ( b = 2 /\ c = 4 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 633 |
410 509 632
|
3jaodan |
|- ( ( b = 2 /\ ( c = 0 \/ c = 2 \/ c = 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 634 |
446
|
necon2i |
|- ( b = 4 -> b =/= 0 ) |
| 635 |
634
|
adantr |
|- ( ( b = 4 /\ c = 0 ) -> b =/= 0 ) |
| 636 |
635
|
neneqd |
|- ( ( b = 4 /\ c = 0 ) -> -. b = 0 ) |
| 637 |
636
|
orcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 638 |
229
|
necon2i |
|- ( b = 4 -> b =/= 3 ) |
| 639 |
638
|
adantr |
|- ( ( b = 4 /\ c = 0 ) -> b =/= 3 ) |
| 640 |
639
|
neneqd |
|- ( ( b = 4 /\ c = 0 ) -> -. b = 3 ) |
| 641 |
640
|
orcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 642 |
636
|
orcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 643 |
65
|
necon2i |
|- ( b = 4 -> b =/= 1 ) |
| 644 |
643
|
adantr |
|- ( ( b = 4 /\ c = 0 ) -> b =/= 1 ) |
| 645 |
644
|
neneqd |
|- ( ( b = 4 /\ c = 0 ) -> -. b = 1 ) |
| 646 |
645
|
orcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 647 |
642 646
|
jca |
|- ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 648 |
416
|
necon2i |
|- ( c = 0 -> c =/= 2 ) |
| 649 |
648
|
adantl |
|- ( ( b = 4 /\ c = 0 ) -> c =/= 2 ) |
| 650 |
649
|
neneqd |
|- ( ( b = 4 /\ c = 0 ) -> -. c = 2 ) |
| 651 |
650
|
olcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 652 |
374
|
adantl |
|- ( ( b = 4 /\ c = 0 ) -> c =/= 1 ) |
| 653 |
652
|
neneqd |
|- ( ( b = 4 /\ c = 0 ) -> -. c = 1 ) |
| 654 |
653
|
olcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 655 |
651 654
|
jca |
|- ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 656 |
379
|
adantl |
|- ( ( b = 4 /\ c = 0 ) -> c =/= 3 ) |
| 657 |
656
|
neneqd |
|- ( ( b = 4 /\ c = 0 ) -> -. c = 3 ) |
| 658 |
657
|
olcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 659 |
640
|
orcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 660 |
658 659
|
jca |
|- ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 661 |
647 655 660
|
3jca |
|- ( ( b = 4 /\ c = 0 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 662 |
640
|
orcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 663 |
657
|
olcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 664 |
662 663
|
jca |
|- ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 665 |
389
|
adantl |
|- ( ( b = 4 /\ c = 0 ) -> c =/= 5 ) |
| 666 |
665
|
neneqd |
|- ( ( b = 4 /\ c = 0 ) -> -. c = 5 ) |
| 667 |
666
|
olcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 668 |
396
|
adantl |
|- ( ( b = 4 /\ c = 0 ) -> c =/= 4 ) |
| 669 |
668
|
neneqd |
|- ( ( b = 4 /\ c = 0 ) -> -. c = 4 ) |
| 670 |
669
|
olcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 671 |
667 670
|
jca |
|- ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 672 |
636
|
orcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 673 |
323
|
necon2i |
|- ( b = 4 -> b =/= 5 ) |
| 674 |
673
|
adantr |
|- ( ( b = 4 /\ c = 0 ) -> b =/= 5 ) |
| 675 |
674
|
neneqd |
|- ( ( b = 4 /\ c = 0 ) -> -. b = 5 ) |
| 676 |
675
|
orcd |
|- ( ( b = 4 /\ c = 0 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 677 |
672 676
|
jca |
|- ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 678 |
664 671 677
|
3jca |
|- ( ( b = 4 /\ c = 0 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 679 |
661 678
|
jca |
|- ( ( b = 4 /\ c = 0 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 680 |
637 641 679
|
jca31 |
|- ( ( b = 4 /\ c = 0 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 681 |
680
|
olcd |
|- ( ( b = 4 /\ c = 0 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 682 |
634
|
adantr |
|- ( ( b = 4 /\ c = 2 ) -> b =/= 0 ) |
| 683 |
682
|
neneqd |
|- ( ( b = 4 /\ c = 2 ) -> -. b = 0 ) |
| 684 |
683
|
orcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 685 |
416
|
adantl |
|- ( ( b = 4 /\ c = 2 ) -> c =/= 0 ) |
| 686 |
685
|
neneqd |
|- ( ( b = 4 /\ c = 2 ) -> -. c = 0 ) |
| 687 |
686
|
olcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 688 |
683
|
orcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 689 |
686
|
olcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 690 |
688 689
|
jca |
|- ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 691 |
643
|
adantr |
|- ( ( b = 4 /\ c = 2 ) -> b =/= 1 ) |
| 692 |
691
|
neneqd |
|- ( ( b = 4 /\ c = 2 ) -> -. b = 1 ) |
| 693 |
692
|
orcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 694 |
420
|
adantl |
|- ( ( b = 4 /\ c = 2 ) -> c =/= 1 ) |
| 695 |
694
|
neneqd |
|- ( ( b = 4 /\ c = 2 ) -> -. c = 1 ) |
| 696 |
695
|
olcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 697 |
693 696
|
jca |
|- ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 698 |
493
|
necon2i |
|- ( b = 4 -> b =/= 2 ) |
| 699 |
698
|
adantr |
|- ( ( b = 4 /\ c = 2 ) -> b =/= 2 ) |
| 700 |
699
|
neneqd |
|- ( ( b = 4 /\ c = 2 ) -> -. b = 2 ) |
| 701 |
700
|
orcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 702 |
638
|
adantr |
|- ( ( b = 4 /\ c = 2 ) -> b =/= 3 ) |
| 703 |
702
|
neneqd |
|- ( ( b = 4 /\ c = 2 ) -> -. b = 3 ) |
| 704 |
703
|
orcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 705 |
701 704
|
jca |
|- ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 706 |
690 697 705
|
3jca |
|- ( ( b = 4 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 707 |
703
|
orcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 708 |
411
|
adantl |
|- ( ( b = 4 /\ c = 2 ) -> c =/= 3 ) |
| 709 |
708
|
neneqd |
|- ( ( b = 4 /\ c = 2 ) -> -. c = 3 ) |
| 710 |
709
|
olcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 711 |
707 710
|
jca |
|- ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 712 |
455
|
adantl |
|- ( ( b = 4 /\ c = 2 ) -> c =/= 5 ) |
| 713 |
712
|
neneqd |
|- ( ( b = 4 /\ c = 2 ) -> -. c = 5 ) |
| 714 |
713
|
olcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 715 |
|
neeq1 |
|- ( c = 2 -> ( c =/= 4 <-> 2 =/= 4 ) ) |
| 716 |
491 715
|
mpbiri |
|- ( c = 2 -> c =/= 4 ) |
| 717 |
716
|
adantl |
|- ( ( b = 4 /\ c = 2 ) -> c =/= 4 ) |
| 718 |
717
|
neneqd |
|- ( ( b = 4 /\ c = 2 ) -> -. c = 4 ) |
| 719 |
718
|
olcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 720 |
714 719
|
jca |
|- ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 721 |
683
|
orcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 722 |
686
|
olcd |
|- ( ( b = 4 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 723 |
721 722
|
jca |
|- ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 724 |
711 720 723
|
3jca |
|- ( ( b = 4 /\ c = 2 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 725 |
706 724
|
jca |
|- ( ( b = 4 /\ c = 2 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 726 |
684 687 725
|
jca31 |
|- ( ( b = 4 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 727 |
726
|
olcd |
|- ( ( b = 4 /\ c = 2 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 728 |
|
eqtr3 |
|- ( ( b = 4 /\ c = 4 ) -> b = c ) |
| 729 |
728
|
orcd |
|- ( ( b = 4 /\ c = 4 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 730 |
681 727 729
|
3jaodan |
|- ( ( b = 4 /\ ( c = 0 \/ c = 2 \/ c = 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 731 |
591 633 730
|
3jaoian |
|- ( ( ( b = 0 \/ b = 2 \/ b = 4 ) /\ ( c = 0 \/ c = 2 \/ c = 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 732 |
540 543 731
|
syl2anb |
|- ( ( b e. ( G NeighbVtx 3 ) /\ c e. ( G NeighbVtx 3 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 733 |
732
|
rgen2 |
|- A. b e. ( G NeighbVtx 3 ) A. c e. ( G NeighbVtx 3 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 734 |
1 2 3
|
usgrexmpl2nb4 |
|- ( G NeighbVtx 4 ) = { 3 , 5 } |
| 735 |
734
|
eleq2i |
|- ( b e. ( G NeighbVtx 4 ) <-> b e. { 3 , 5 } ) |
| 736 |
6
|
elpr |
|- ( b e. { 3 , 5 } <-> ( b = 3 \/ b = 5 ) ) |
| 737 |
735 736
|
bitri |
|- ( b e. ( G NeighbVtx 4 ) <-> ( b = 3 \/ b = 5 ) ) |
| 738 |
734
|
eleq2i |
|- ( c e. ( G NeighbVtx 4 ) <-> c e. { 3 , 5 } ) |
| 739 |
10
|
elpr |
|- ( c e. { 3 , 5 } <-> ( c = 3 \/ c = 5 ) ) |
| 740 |
738 739
|
bitri |
|- ( c e. ( G NeighbVtx 4 ) <-> ( c = 3 \/ c = 5 ) ) |
| 741 |
191 341 243 343
|
ccase |
|- ( ( ( b = 3 \/ b = 5 ) /\ ( c = 3 \/ c = 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 742 |
737 740 741
|
syl2anb |
|- ( ( b e. ( G NeighbVtx 4 ) /\ c e. ( G NeighbVtx 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 743 |
742
|
rgen2 |
|- A. b e. ( G NeighbVtx 4 ) A. c e. ( G NeighbVtx 4 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 744 |
1 2 3
|
usgrexmpl2nb5 |
|- ( G NeighbVtx 5 ) = { 0 , 4 } |
| 745 |
744
|
eleq2i |
|- ( b e. ( G NeighbVtx 5 ) <-> b e. { 0 , 4 } ) |
| 746 |
6
|
elpr |
|- ( b e. { 0 , 4 } <-> ( b = 0 \/ b = 4 ) ) |
| 747 |
745 746
|
bitri |
|- ( b e. ( G NeighbVtx 5 ) <-> ( b = 0 \/ b = 4 ) ) |
| 748 |
744
|
eleq2i |
|- ( c e. ( G NeighbVtx 5 ) <-> c e. { 0 , 4 } ) |
| 749 |
10
|
elpr |
|- ( c e. { 0 , 4 } <-> ( c = 0 \/ c = 4 ) ) |
| 750 |
748 749
|
bitri |
|- ( c e. ( G NeighbVtx 5 ) <-> ( c = 0 \/ c = 4 ) ) |
| 751 |
356 681 590 729
|
ccase |
|- ( ( ( b = 0 \/ b = 4 ) /\ ( c = 0 \/ c = 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 752 |
747 750 751
|
syl2anb |
|- ( ( b e. ( G NeighbVtx 5 ) /\ c e. ( G NeighbVtx 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 753 |
752
|
rgen2 |
|- A. b e. ( G NeighbVtx 5 ) A. c e. ( G NeighbVtx 5 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 754 |
|
3ex |
|- 3 e. _V |
| 755 |
|
4nn0 |
|- 4 e. NN0 |
| 756 |
755
|
elexi |
|- 4 e. _V |
| 757 |
|
5nn0 |
|- 5 e. NN0 |
| 758 |
757
|
elexi |
|- 5 e. _V |
| 759 |
|
oveq2 |
|- ( a = 3 -> ( G NeighbVtx a ) = ( G NeighbVtx 3 ) ) |
| 760 |
759
|
raleqdv |
|- ( a = 3 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 3 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 761 |
759 760
|
raleqbidv |
|- ( a = 3 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 3 ) A. c e. ( G NeighbVtx 3 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 762 |
|
oveq2 |
|- ( a = 4 -> ( G NeighbVtx a ) = ( G NeighbVtx 4 ) ) |
| 763 |
762
|
raleqdv |
|- ( a = 4 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 4 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 764 |
762 763
|
raleqbidv |
|- ( a = 4 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 4 ) A. c e. ( G NeighbVtx 4 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 765 |
|
oveq2 |
|- ( a = 5 -> ( G NeighbVtx a ) = ( G NeighbVtx 5 ) ) |
| 766 |
765
|
raleqdv |
|- ( a = 5 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 5 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 767 |
765 766
|
raleqbidv |
|- ( a = 5 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 5 ) A. c e. ( G NeighbVtx 5 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 768 |
754 756 758 761 764 767
|
raltp |
|- ( A. a e. { 3 , 4 , 5 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> ( A. b e. ( G NeighbVtx 3 ) A. c e. ( G NeighbVtx 3 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) /\ A. b e. ( G NeighbVtx 4 ) A. c e. ( G NeighbVtx 4 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) /\ A. b e. ( G NeighbVtx 5 ) A. c e. ( G NeighbVtx 5 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 769 |
733 743 753 768
|
mpbir3an |
|- A. a e. { 3 , 4 , 5 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 770 |
|
ralunb |
|- ( A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> ( A. a e. { 0 , 1 , 2 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) /\ A. a e. { 3 , 4 , 5 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 771 |
536 769 770
|
mpbir2an |
|- A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 772 |
|
ianor |
|- ( -. ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) <-> ( -. b =/= c \/ -. { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) |
| 773 |
|
nne |
|- ( -. b =/= c <-> b = c ) |
| 774 |
|
ioran |
|- ( -. ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) <-> ( -. ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) /\ -. ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) ) |
| 775 |
|
ioran |
|- ( -. ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) <-> ( -. ( b = 0 /\ c = 3 ) /\ -. ( b = 3 /\ c = 0 ) ) ) |
| 776 |
|
ianor |
|- ( -. ( b = 0 /\ c = 3 ) <-> ( -. b = 0 \/ -. c = 3 ) ) |
| 777 |
|
ianor |
|- ( -. ( b = 3 /\ c = 0 ) <-> ( -. b = 3 \/ -. c = 0 ) ) |
| 778 |
776 777
|
anbi12i |
|- ( ( -. ( b = 0 /\ c = 3 ) /\ -. ( b = 3 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) ) |
| 779 |
775 778
|
bitri |
|- ( -. ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) ) |
| 780 |
|
ioran |
|- ( -. ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) <-> ( -. ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) /\ -. ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) |
| 781 |
|
3ioran |
|- ( -. ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) <-> ( -. ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) /\ -. ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) /\ -. ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) ) |
| 782 |
|
ioran |
|- ( -. ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) <-> ( -. ( b = 0 /\ c = 1 ) /\ -. ( b = 1 /\ c = 0 ) ) ) |
| 783 |
|
ianor |
|- ( -. ( b = 0 /\ c = 1 ) <-> ( -. b = 0 \/ -. c = 1 ) ) |
| 784 |
|
ianor |
|- ( -. ( b = 1 /\ c = 0 ) <-> ( -. b = 1 \/ -. c = 0 ) ) |
| 785 |
783 784
|
anbi12i |
|- ( ( -. ( b = 0 /\ c = 1 ) /\ -. ( b = 1 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 786 |
782 785
|
bitri |
|- ( -. ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 787 |
|
ioran |
|- ( -. ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) <-> ( -. ( b = 1 /\ c = 2 ) /\ -. ( b = 2 /\ c = 1 ) ) ) |
| 788 |
|
ianor |
|- ( -. ( b = 1 /\ c = 2 ) <-> ( -. b = 1 \/ -. c = 2 ) ) |
| 789 |
|
ianor |
|- ( -. ( b = 2 /\ c = 1 ) <-> ( -. b = 2 \/ -. c = 1 ) ) |
| 790 |
788 789
|
anbi12i |
|- ( ( -. ( b = 1 /\ c = 2 ) /\ -. ( b = 2 /\ c = 1 ) ) <-> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 791 |
787 790
|
bitri |
|- ( -. ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) <-> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 792 |
|
ioran |
|- ( -. ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) <-> ( -. ( b = 2 /\ c = 3 ) /\ -. ( b = 3 /\ c = 2 ) ) ) |
| 793 |
|
ianor |
|- ( -. ( b = 2 /\ c = 3 ) <-> ( -. b = 2 \/ -. c = 3 ) ) |
| 794 |
|
ianor |
|- ( -. ( b = 3 /\ c = 2 ) <-> ( -. b = 3 \/ -. c = 2 ) ) |
| 795 |
793 794
|
anbi12i |
|- ( ( -. ( b = 2 /\ c = 3 ) /\ -. ( b = 3 /\ c = 2 ) ) <-> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 796 |
792 795
|
bitri |
|- ( -. ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) <-> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 797 |
786 791 796
|
3anbi123i |
|- ( ( -. ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) /\ -. ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) /\ -. ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) <-> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 798 |
781 797
|
bitri |
|- ( -. ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) <-> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 799 |
|
3ioran |
|- ( -. ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) <-> ( -. ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) /\ -. ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) /\ -. ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) |
| 800 |
|
ioran |
|- ( -. ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) <-> ( -. ( b = 3 /\ c = 4 ) /\ -. ( b = 4 /\ c = 3 ) ) ) |
| 801 |
|
ianor |
|- ( -. ( b = 3 /\ c = 4 ) <-> ( -. b = 3 \/ -. c = 4 ) ) |
| 802 |
|
ianor |
|- ( -. ( b = 4 /\ c = 3 ) <-> ( -. b = 4 \/ -. c = 3 ) ) |
| 803 |
801 802
|
anbi12i |
|- ( ( -. ( b = 3 /\ c = 4 ) /\ -. ( b = 4 /\ c = 3 ) ) <-> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 804 |
800 803
|
bitri |
|- ( -. ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) <-> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 805 |
|
ioran |
|- ( -. ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) <-> ( -. ( b = 4 /\ c = 5 ) /\ -. ( b = 5 /\ c = 4 ) ) ) |
| 806 |
|
ianor |
|- ( -. ( b = 4 /\ c = 5 ) <-> ( -. b = 4 \/ -. c = 5 ) ) |
| 807 |
|
ianor |
|- ( -. ( b = 5 /\ c = 4 ) <-> ( -. b = 5 \/ -. c = 4 ) ) |
| 808 |
806 807
|
anbi12i |
|- ( ( -. ( b = 4 /\ c = 5 ) /\ -. ( b = 5 /\ c = 4 ) ) <-> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 809 |
805 808
|
bitri |
|- ( -. ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) <-> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 810 |
|
ioran |
|- ( -. ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) <-> ( -. ( b = 0 /\ c = 5 ) /\ -. ( b = 5 /\ c = 0 ) ) ) |
| 811 |
|
ianor |
|- ( -. ( b = 0 /\ c = 5 ) <-> ( -. b = 0 \/ -. c = 5 ) ) |
| 812 |
|
ianor |
|- ( -. ( b = 5 /\ c = 0 ) <-> ( -. b = 5 \/ -. c = 0 ) ) |
| 813 |
811 812
|
anbi12i |
|- ( ( -. ( b = 0 /\ c = 5 ) /\ -. ( b = 5 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 814 |
810 813
|
bitri |
|- ( -. ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 815 |
804 809 814
|
3anbi123i |
|- ( ( -. ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) /\ -. ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) /\ -. ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) <-> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 816 |
799 815
|
bitri |
|- ( -. ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) <-> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 817 |
798 816
|
anbi12i |
|- ( ( -. ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) /\ -. ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) <-> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 818 |
780 817
|
bitri |
|- ( -. ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) <-> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 819 |
779 818
|
anbi12i |
|- ( ( -. ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) /\ -. ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) <-> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 820 |
774 819
|
bitri |
|- ( -. ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) <-> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 821 |
6 10 523 524
|
preq12b |
|- ( { b , c } = { 0 , 1 } <-> ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) ) |
| 822 |
6 10 524 525
|
preq12b |
|- ( { b , c } = { 1 , 2 } <-> ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) ) |
| 823 |
6 10 525 754
|
preq12b |
|- ( { b , c } = { 2 , 3 } <-> ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) |
| 824 |
821 822 823
|
3orbi123i |
|- ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) <-> ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) ) |
| 825 |
6 10 754 756
|
preq12b |
|- ( { b , c } = { 3 , 4 } <-> ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) ) |
| 826 |
6 10 756 758
|
preq12b |
|- ( { b , c } = { 4 , 5 } <-> ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) ) |
| 827 |
6 10 523 758
|
preq12b |
|- ( { b , c } = { 0 , 5 } <-> ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) |
| 828 |
825 826 827
|
3orbi123i |
|- ( ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) <-> ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) |
| 829 |
824 828
|
orbi12i |
|- ( ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) <-> ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) |
| 830 |
829
|
orbi2i |
|- ( ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) <-> ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) ) |
| 831 |
820 830
|
xchnxbir |
|- ( -. ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) <-> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 832 |
|
elun |
|- ( { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) <-> ( { b , c } e. { { 0 , 3 } } \/ { b , c } e. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) |
| 833 |
|
prex |
|- { b , c } e. _V |
| 834 |
833
|
elsn |
|- ( { b , c } e. { { 0 , 3 } } <-> { b , c } = { 0 , 3 } ) |
| 835 |
6 10 523 754
|
preq12b |
|- ( { b , c } = { 0 , 3 } <-> ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) ) |
| 836 |
834 835
|
bitri |
|- ( { b , c } e. { { 0 , 3 } } <-> ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) ) |
| 837 |
|
elun |
|- ( { b , c } e. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) <-> ( { b , c } e. { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } \/ { b , c } e. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) |
| 838 |
833
|
eltp |
|- ( { b , c } e. { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } <-> ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) ) |
| 839 |
833
|
eltp |
|- ( { b , c } e. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } <-> ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) |
| 840 |
838 839
|
orbi12i |
|- ( ( { b , c } e. { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } \/ { b , c } e. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) <-> ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) |
| 841 |
837 840
|
bitri |
|- ( { b , c } e. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) <-> ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) |
| 842 |
836 841
|
orbi12i |
|- ( ( { b , c } e. { { 0 , 3 } } \/ { b , c } e. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) <-> ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) ) |
| 843 |
832 842
|
bitri |
|- ( { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) <-> ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) ) |
| 844 |
831 843
|
xchnxbir |
|- ( -. { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) <-> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 845 |
773 844
|
orbi12i |
|- ( ( -. b =/= c \/ -. { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) <-> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 846 |
772 845
|
bitr2i |
|- ( ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> -. ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) |
| 847 |
846
|
3ralbii |
|- ( A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) -. ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) |
| 848 |
|
ralnex3 |
|- ( A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) -. ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) <-> -. E. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) |
| 849 |
847 848
|
bitri |
|- ( A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> -. E. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) |
| 850 |
771 849
|
mpbi |
|- -. E. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) |
| 851 |
1 2 3
|
usgrexmpl2 |
|- G e. USGraph |
| 852 |
1 2 3
|
usgrexmpl2vtx |
|- ( Vtx ` G ) = ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) |
| 853 |
852
|
eqcomi |
|- ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) = ( Vtx ` G ) |
| 854 |
1 2 3
|
usgrexmpl2edg |
|- ( Edg ` G ) = ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) |
| 855 |
854
|
eqcomi |
|- ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) = ( Edg ` G ) |
| 856 |
|
eqid |
|- ( G NeighbVtx a ) = ( G NeighbVtx a ) |
| 857 |
853 855 856
|
usgrgrtrirex |
|- ( G e. USGraph -> ( E. t t e. ( GrTriangles ` G ) <-> E. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) ) |
| 858 |
851 857
|
ax-mp |
|- ( E. t t e. ( GrTriangles ` G ) <-> E. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) |
| 859 |
850 858
|
mtbir |
|- -. E. t t e. ( GrTriangles ` G ) |