| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrexmpl2.v |
|- V = ( 0 ... 5 ) |
| 2 |
|
usgrexmpl2.e |
|- E = <" { 0 , 1 } { 1 , 2 } { 2 , 3 } { 3 , 4 } { 4 , 5 } { 0 , 3 } { 0 , 5 } "> |
| 3 |
|
usgrexmpl2.g |
|- G = <. V , E >. |
| 4 |
|
usgrexmpl1.k |
|- K = <" { 0 , 1 } { 0 , 2 } { 1 , 2 } { 0 , 3 } { 3 , 4 } { 3 , 5 } { 4 , 5 } "> |
| 5 |
|
usgrexmpl1.h |
|- H = <. V , K >. |
| 6 |
1 2 3
|
usgrexmpl2 |
|- G e. USGraph |
| 7 |
|
usgruhgr |
|- ( G e. USGraph -> G e. UHGraph ) |
| 8 |
6 7
|
ax-mp |
|- G e. UHGraph |
| 9 |
|
gricsym |
|- ( G e. UHGraph -> ( G ~=gr H -> H ~=gr G ) ) |
| 10 |
8 9
|
ax-mp |
|- ( G ~=gr H -> H ~=gr G ) |
| 11 |
1 4 5
|
usgrexmpl1tri |
|- { 0 , 1 , 2 } e. ( GrTriangles ` H ) |
| 12 |
|
brgric |
|- ( H ~=gr G <-> ( H GraphIso G ) =/= (/) ) |
| 13 |
|
n0 |
|- ( ( H GraphIso G ) =/= (/) <-> E. f f e. ( H GraphIso G ) ) |
| 14 |
12 13
|
bitri |
|- ( H ~=gr G <-> E. f f e. ( H GraphIso G ) ) |
| 15 |
1 2 3
|
usgrexmpl2trifr |
|- -. E. t t e. ( GrTriangles ` G ) |
| 16 |
1 4 5
|
usgrexmpl1 |
|- H e. USGraph |
| 17 |
|
usgruhgr |
|- ( H e. USGraph -> H e. UHGraph ) |
| 18 |
16 17
|
ax-mp |
|- H e. UHGraph |
| 19 |
18
|
a1i |
|- ( ( f e. ( H GraphIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> H e. UHGraph ) |
| 20 |
8
|
a1i |
|- ( ( f e. ( H GraphIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> G e. UHGraph ) |
| 21 |
|
simpl |
|- ( ( f e. ( H GraphIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> f e. ( H GraphIso G ) ) |
| 22 |
|
simpr |
|- ( ( f e. ( H GraphIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) |
| 23 |
19 20 21 22
|
grimgrtri |
|- ( ( f e. ( H GraphIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) |
| 24 |
23
|
ex |
|- ( f e. ( H GraphIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) ) |
| 25 |
|
alnex |
|- ( A. t -. t e. ( GrTriangles ` G ) <-> -. E. t t e. ( GrTriangles ` G ) ) |
| 26 |
|
vex |
|- f e. _V |
| 27 |
26
|
imaex |
|- ( f " { 0 , 1 , 2 } ) e. _V |
| 28 |
|
id |
|- ( ( f " { 0 , 1 , 2 } ) e. _V -> ( f " { 0 , 1 , 2 } ) e. _V ) |
| 29 |
|
eleq1 |
|- ( t = ( f " { 0 , 1 , 2 } ) -> ( t e. ( GrTriangles ` G ) <-> ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) ) |
| 30 |
29
|
notbid |
|- ( t = ( f " { 0 , 1 , 2 } ) -> ( -. t e. ( GrTriangles ` G ) <-> -. ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) ) |
| 31 |
30
|
adantl |
|- ( ( ( f " { 0 , 1 , 2 } ) e. _V /\ t = ( f " { 0 , 1 , 2 } ) ) -> ( -. t e. ( GrTriangles ` G ) <-> -. ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) ) |
| 32 |
28 31
|
spcdv |
|- ( ( f " { 0 , 1 , 2 } ) e. _V -> ( A. t -. t e. ( GrTriangles ` G ) -> -. ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) ) |
| 33 |
27 32
|
ax-mp |
|- ( A. t -. t e. ( GrTriangles ` G ) -> -. ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) |
| 34 |
33
|
pm2.21d |
|- ( A. t -. t e. ( GrTriangles ` G ) -> ( ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) -> -. G ~=gr H ) ) |
| 35 |
25 34
|
sylbir |
|- ( -. E. t t e. ( GrTriangles ` G ) -> ( ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) -> -. G ~=gr H ) ) |
| 36 |
15 24 35
|
mpsylsyld |
|- ( f e. ( H GraphIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=gr H ) ) |
| 37 |
36
|
exlimiv |
|- ( E. f f e. ( H GraphIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=gr H ) ) |
| 38 |
14 37
|
sylbi |
|- ( H ~=gr G -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=gr H ) ) |
| 39 |
10 11 38
|
mpisyl |
|- ( G ~=gr H -> -. G ~=gr H ) |
| 40 |
39
|
pm2.01i |
|- -. G ~=gr H |