Metamath Proof Explorer


Theorem usgrexmpl12ngric

Description: The graphs H and G are not isomorphic ( H contains a triangle, see usgrexmpl1tri , whereas G does not, see usgrexmpl2trifr . (Contributed by AV, 10-Aug-2025)

Ref Expression
Hypotheses usgrexmpl2.v V = 0 5
usgrexmpl2.e E = ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩
usgrexmpl2.g G = V E
usgrexmpl1.k K = ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩
usgrexmpl1.h H = V K
Assertion usgrexmpl12ngric ¬ G 𝑔𝑟 H

Proof

Step Hyp Ref Expression
1 usgrexmpl2.v V = 0 5
2 usgrexmpl2.e E = ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩
3 usgrexmpl2.g G = V E
4 usgrexmpl1.k K = ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩
5 usgrexmpl1.h H = V K
6 1 2 3 usgrexmpl2 G USGraph
7 usgruhgr G USGraph G UHGraph
8 6 7 ax-mp G UHGraph
9 gricsym G UHGraph G 𝑔𝑟 H H 𝑔𝑟 G
10 8 9 ax-mp G 𝑔𝑟 H H 𝑔𝑟 G
11 1 4 5 usgrexmpl1tri Could not format { 0 , 1 , 2 } e. ( GrTriangles ` H ) : No typesetting found for |- { 0 , 1 , 2 } e. ( GrTriangles ` H ) with typecode |-
12 brgric H 𝑔𝑟 G H GraphIso G
13 n0 H GraphIso G f f H GraphIso G
14 12 13 bitri H 𝑔𝑟 G f f H GraphIso G
15 1 2 3 usgrexmpl2trifr Could not format -. E. t t e. ( GrTriangles ` G ) : No typesetting found for |- -. E. t t e. ( GrTriangles ` G ) with typecode |-
16 1 4 5 usgrexmpl1 H USGraph
17 usgruhgr H USGraph H UHGraph
18 16 17 ax-mp H UHGraph
19 18 a1i Could not format ( ( f e. ( H GraphIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> H e. UHGraph ) : No typesetting found for |- ( ( f e. ( H GraphIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> H e. UHGraph ) with typecode |-
20 8 a1i Could not format ( ( f e. ( H GraphIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> G e. UHGraph ) : No typesetting found for |- ( ( f e. ( H GraphIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> G e. UHGraph ) with typecode |-
21 simpl Could not format ( ( f e. ( H GraphIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> f e. ( H GraphIso G ) ) : No typesetting found for |- ( ( f e. ( H GraphIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> f e. ( H GraphIso G ) ) with typecode |-
22 simpr Could not format ( ( f e. ( H GraphIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) : No typesetting found for |- ( ( f e. ( H GraphIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) with typecode |-
23 19 20 21 22 grimgrtri Could not format ( ( f e. ( H GraphIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) : No typesetting found for |- ( ( f e. ( H GraphIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) with typecode |-
24 23 ex Could not format ( f e. ( H GraphIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) ) : No typesetting found for |- ( f e. ( H GraphIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) ) with typecode |-
25 alnex Could not format ( A. t -. t e. ( GrTriangles ` G ) <-> -. E. t t e. ( GrTriangles ` G ) ) : No typesetting found for |- ( A. t -. t e. ( GrTriangles ` G ) <-> -. E. t t e. ( GrTriangles ` G ) ) with typecode |-
26 vex f V
27 26 imaex f 0 1 2 V
28 id f 0 1 2 V f 0 1 2 V
29 eleq1 Could not format ( t = ( f " { 0 , 1 , 2 } ) -> ( t e. ( GrTriangles ` G ) <-> ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) ) : No typesetting found for |- ( t = ( f " { 0 , 1 , 2 } ) -> ( t e. ( GrTriangles ` G ) <-> ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) ) with typecode |-
30 29 notbid Could not format ( t = ( f " { 0 , 1 , 2 } ) -> ( -. t e. ( GrTriangles ` G ) <-> -. ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) ) : No typesetting found for |- ( t = ( f " { 0 , 1 , 2 } ) -> ( -. t e. ( GrTriangles ` G ) <-> -. ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) ) with typecode |-
31 30 adantl Could not format ( ( ( f " { 0 , 1 , 2 } ) e. _V /\ t = ( f " { 0 , 1 , 2 } ) ) -> ( -. t e. ( GrTriangles ` G ) <-> -. ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) ) : No typesetting found for |- ( ( ( f " { 0 , 1 , 2 } ) e. _V /\ t = ( f " { 0 , 1 , 2 } ) ) -> ( -. t e. ( GrTriangles ` G ) <-> -. ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) ) with typecode |-
32 28 31 spcdv Could not format ( ( f " { 0 , 1 , 2 } ) e. _V -> ( A. t -. t e. ( GrTriangles ` G ) -> -. ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) ) : No typesetting found for |- ( ( f " { 0 , 1 , 2 } ) e. _V -> ( A. t -. t e. ( GrTriangles ` G ) -> -. ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) ) with typecode |-
33 27 32 ax-mp Could not format ( A. t -. t e. ( GrTriangles ` G ) -> -. ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) : No typesetting found for |- ( A. t -. t e. ( GrTriangles ` G ) -> -. ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) with typecode |-
34 33 pm2.21d Could not format ( A. t -. t e. ( GrTriangles ` G ) -> ( ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) -> -. G ~=gr H ) ) : No typesetting found for |- ( A. t -. t e. ( GrTriangles ` G ) -> ( ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) -> -. G ~=gr H ) ) with typecode |-
35 25 34 sylbir Could not format ( -. E. t t e. ( GrTriangles ` G ) -> ( ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) -> -. G ~=gr H ) ) : No typesetting found for |- ( -. E. t t e. ( GrTriangles ` G ) -> ( ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) -> -. G ~=gr H ) ) with typecode |-
36 15 24 35 mpsylsyld Could not format ( f e. ( H GraphIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=gr H ) ) : No typesetting found for |- ( f e. ( H GraphIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=gr H ) ) with typecode |-
37 36 exlimiv Could not format ( E. f f e. ( H GraphIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=gr H ) ) : No typesetting found for |- ( E. f f e. ( H GraphIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=gr H ) ) with typecode |-
38 14 37 sylbi Could not format ( H ~=gr G -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=gr H ) ) : No typesetting found for |- ( H ~=gr G -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=gr H ) ) with typecode |-
39 10 11 38 mpisyl G 𝑔𝑟 H ¬ G 𝑔𝑟 H
40 39 pm2.01i ¬ G 𝑔𝑟 H